Home > Press > Observation of left and right at nanoscale with optical force
Abstract:
The research group at the Institute for Molecular Science successfully observed the left and right handedness of material structures at the nanoscale, by illuminating chiral gold nanostructures with circularly polarized light and detecting the optical force acting on a probe near the nanostructures. This result demonstrated that it is possible to analyze the chiral structure of matter at the nanoscale using light.
Chirality describes the property of a material structure not being superimposable onto its mirror image. Since the left and right hands, which are mirror images of each other, do not coincide (they are not the same), they are chiral. Chiral objects can be distinguished to right- or left-handedness. Many substances that constitute life are chiral, and often only one of either the right- or left-handedness naturally exists. Also, in new functional materials, their chiral nature often plays an important role for the functions. One characteristic of such chiral materials is to exhibit different responses to right- and left-circularly polarized light (Figure 1), known as the chiro-optical effect. However, observation of the chiro-optical effect at the nanoscale, occurring near a chiral substance, had not been realized until now.
In this study, the chiro-optical effect at the nanoscale was observed by using Photo-induced Force Microscopy under optical force mode (OF-PiFM), which detects the optical force exerted on the tip near the illuminated object. Although it was theoretically considered that the chiro-optical effect at the nanoscale could be observed using OF-PiFM, no actual observations had been reported. The research group successfully observed the chiro-optical effect at the nanoscale by detecting the optical force induced on the probe near the chiral gold nanostructure illuminated with right- and left-circularly polarized light using OF-PiFM (Figure 2).
As a sample to verify the effectiveness of this method, the research group used a gammadion-shaped gold nanostructures (Figure 3).
As a result of imaging the gammadion structures with OF-PiFM, different images were obtained when illuminating with right-circularly polarized light compared to left-circularly polarized light (Figure 4).
These results clarify that local right- or left-handedness at the nanoscale can be distinguished and observed using OF-PiFM with circularly polarized light.
▼Financial Supports
This research was conducted with the support of various grants, including the Grant-in-Aid for Scientific Research (JP16H06505, JP21H04641, JP21K18884, JP22H05135, etc.).
####
For more information, please click here
Contacts:
Hayao KIMURA
National Institutes of Natural Sciences
Office: 81-354-251-890
Public Relations Manager
Institute for Molecular Science
Copyright © National Institutes of Natural Sciences
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Imaging
The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023
Quantum powers researchers to see the unseen September 8th, 2023
USTC achieved dynamic imaging of interfacial electrochemistry August 11th, 2023
Possible Futures
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Discoveries
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Announcements
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Tools
Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023
The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |