Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors

Design and fabrication of flexible capacitive humidity sensors. (a) Fabrication processes of flexible Ga2O3/LM humidity sensors, including ultrasonication, spraying coating and laser sintering. (b) Schematic of the mechanism to form GWLM films by laser sintering and the sensing mechanism of Ga2O3/LM-based humidity sensors.

CREDIT
OEA
Design and fabrication of flexible capacitive humidity sensors. (a) Fabrication processes of flexible Ga2O3/LM humidity sensors, including ultrasonication, spraying coating and laser sintering. (b) Schematic of the mechanism to form GWLM films by laser sintering and the sensing mechanism of Ga2O3/LM-based humidity sensors. CREDIT OEA

Abstract:
A new publication from Opto-Electronic Advances, 10.29026/oea.2023.220172 discusses laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors.

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors

Sichuan, China | Posted on May 12th, 2023

Recent studies in emerging flexible humidity sensors have achieved great developments in advanced manufacturing methods, as well as innovative applications including human healthcare detection, plant health management and noncontact human-machine interfaces. Capacitive-type humidity sensors have gained much attention due to reliable humidity sensing performance, low power consumption and facile structural designs. Generally, the performance of a capacitive humidity sensor is strongly correlated with the dielectric permittivity of functional materials between sensing electrodes. Until now, various active materials have been investigated as flexible capacitive humidity sensors, such as carbon materials, metal oxides, metal sulfides, and polymers. Similarly, they are typically endowed with large exposed surface areas and rich active sites to interact with water molecules. Ga2O3, as a potential metal oxide with high exposed hydrophilic groups, has been employed as an active material for capacitive humidity sensors. Traditional fabrication techniques to obtain Ga2O3-based humidity sensors mainly involve chemical vapor deposition, thermal treatment, and hydrothermal methods. Nevertheless, these methods usually require high annealing temperature, complicated fabrication procedures as well as various material systems, hindering their practical applications.



Digital laser direct writing is a rapid and environmental-friendly manufacturing approach to generating functional micro/nano-structures or directly creating sensitive nanomaterials with high precision. Based on laser-matter interactions, via judiciously selecting the appropriate laser processing parameters, a variety of innovative flexible sensors, such as physical, chemical and physiological sensors have been demonstrated. The typical strategies usually rely on the laser direct writing of electrodes, followed by the deposition of moisture sensitive nanomaterials, such as carbon or metal sulfides-based materials, on the top of electrodes. However, this leads to multiple complex procedures. Therefore, a facile and simple approach to developing thin film-based humidity sensor is still required.



In this work, a wearable capacitive-type Ga2O3/liquid metal-based humidity sensor is demonstrated by a one-step laser direct writing technique. Owing to the photothermal effect of laser, the Ga2O3-wrapped liquid metal nanoparticles can be selectively sintered and converted from insulative to conductive traces with a resistivity of 0.19 Ω·cm, while the untreated regions serve as active sensing layers in response to moisture changes. Under 95% relative humidity, the humidity sensor displays a highly stable performance along with rapid response and recover time. Utilizing these superior properties, the Ga2O3/liquid metal-based humidity sensor is able to monitor human respiration rate, as well as skin moisture of the palm under different physiological states for healthcare monitoring.



# # # # # #

Prof. Kaichen Xu is a PI of Flexible/Bioelectronic Manufacturing Laboratory, Zhejiang University. He was selected into a National Young Talent Program and received JSPS scholarship. In 2018, he received his PhD degree from the National University of Singapore under the supervision of Professor Hong Minghui (Academician of Singapore Academy of Engineering, now Professor in Xiamen University). Later, he went to Osaka Public University for postdoctoral research with the cooperative supervisor of Professor Kuniharu Takei. In 2020, he joined the School of Mechanical Engineering of Zhejiang University and the team of Academician Huayong Yang. The research group is mainly focused on flexible/bioelectronic manufacturing and laser micro-nano manufacturing. He has published over 30 papers in international journals. He is the editorial board member of Opto-Electronic Engineering, the youth expert of Engineering (Journal of the Chinese Academy of Engineering), and the youth editorial board member of several journals, including Chinese Laser, International Journal of Extreme Manufacturing, Frontiers of Optoelectronics. He is the reviewer for over 40 journals (>180 times). Research homepage: https://blog.nus.edu.sg/xukaichen/

####

About Compuscript Ltd
Opto-Electronic Advances (OEA) is a high-impact, open access, peer reviewed monthly SCI journal with an impact factor of 8.933 (Journal Citation Reports for IF2021). Since its launch in March 2018, OEA has been indexed in SCI, EI, DOAJ, Scopus, CA and ICI databases over the time and expanded its Editorial Board to 36 members from 17 countries and regions (average h-index 49).

The journal is published by The Institute of Optics and Electronics, Chinese Academy of Sciences, aiming at providing a platform for researchers, academicians, professionals, practitioners, and students to impart and share knowledge in the form of high quality empirical and theoretical research papers covering the topics of optics, photonics and optoelectronics.

For more information, please click here

Contacts:
Conor Lovett
Compuscript Ltd

Office: 353-614-75205

Copyright © Compuscript Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Cui SY, Lu YY, Kong DP, Luo HY, Peng L et al. Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors. Opto-Electron Adv 6, 220172 (2023). doi: 10.29026/oea.2023.220172:

Related News Press

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Possible Futures

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Chip Technology

University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

The present and future of computing get a boost from new research July 21st, 2023

Scientists edge toward scalable quantum simulations on a photonic chip: A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena June 30th, 2023

Optical computing/Photonic computing

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023

Scientists edge toward scalable quantum simulations on a photonic chip: A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena June 30th, 2023

USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023

Sensors

Electron collider on a chip June 30th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Nanobiotechnology: How Nanomaterials Can Solve Biological and Medical Problems April 14th, 2023

Diamond cut precision: University of Illinois to develop diamond sensors for neutron experiment and quantum information science April 14th, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Photonics/Optics/Lasers

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023

Ultrafast lasers for materials processing August 11th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project