Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Optical switching at record speeds opens door for ultrafast, light-based electronics and computers:

University of Arizona Assistant Professor of Physics and Optical Sciences Mohammed Hassan

CREDIT
Courtesy of M. Hassan/University of Arizona
University of Arizona Assistant Professor of Physics and Optical Sciences Mohammed Hassan CREDIT Courtesy of M. Hassan/University of Arizona

Abstract:
Imagine a home computer operating 1 million times faster than the most expensive hardware on the market. Now, imagine that level of computing power as the industry standard. University of Arizona researchers hope to pave the way for that reality using light-based optical computing, a marked improvement from the semiconductor-based transistors that currently run the world.

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers:

Tucson, AZ | Posted on March 24th, 2023

"Semiconductor-based transistors are in all of the electronics that we use today," said Mohammed Hassan, assistant professor of physics and optical sciences. "They're part of every industry – from kids' toys to rockets – and are the main building blocks of electronics."

Hassan lad an international team of researchers that published the research article "Ultrafast optical switching and data encoding on synthesized light fields" in Science Advances in February. UArizona physics postdoctoral research associate Dandan Hui and physics graduate student Husain Alqattan also contributed to the article, in addition to researchers from Ohio State University and the Ludwig Maximilian University of Munich.

Semiconductors in electronics rely on electrical signals transmitted via microwaves to switch – either allow or prevent – the flow of electricity and data, represented as either "on" or "off." Hassan said the future of electronics will be based instead on using laser light to control electrical signals, opening the door for the establishment of "optical transistors" and the development of ultrafast optical electronics.

Since the invention of semiconductor transistors in the 1940s, technological advancement has centered on increasing the speed at which electric signals can be generated – measured in hertz. According to Hassan, the fastest semiconductor transistors in the world can operate at a speed of more than 800 gigahertz. Data transfer at that frequency is measured at a scale of picoseconds, or one trillionth of a second.

Computer processing power has increased steadily since the introduction of the semiconductor transistor, though Hassan said one of the primary concerns in developing faster technology is that the heat generated by continuing to add transistors to a microchip would eventually require more energy to cool than can pass through the chip.

In their article, Hassan and his collaborators discuss using all-optical switching of a light signal on and off to reach data transfer speeds exceeding a petahertz, measured at the attosecond time scale. An attosecond is one quintillionth of a second, meaning the transfer of data 1 million times faster than the fastest semiconductor transistors.

While optical switches were already shown to achieve information processing speeds faster than that of semiconductor transistor-based technology, Hassan and his co-authors were able to register the on and off signals from a light source happening at the scale of billionths of a second. This was accomplished by taking advantage of a characteristic of fused silica, a glass often used in optics. Fused silica can instantaneously change its reflectivity, and by using ultrafast lasers, Hassan and his team were able to register changes in a light's signal at the attosecond time scale. The work also demonstrated the possibility of sending data in the form of "one" and "zero" representing on and off via light at previously impossible speeds.

"This new advancement would also allow the encoding of data on ultrafast laser pulses, which would increase the data transfer speed and could be used in long-distance communications from Earth into deep space," Hassan said. "This promises to increase the limiting speed of data processing and information encoding and open a new realm of information technology."

The project was funded by a $1.4 million grant awarded to Hassan in 2018 by the Gordon and Betty Moore Foundation, an organization that aims "to create positive outcomes for future generations" by supporting research into scientific discovery, environmental conservation and patient care. The article was also based on work supported by the United States Air Force Office of Scientific Research's Young Investigator Research Program.

####

For more information, please click here

Contacts:
Media Contact

Daniel Stolte
University of Arizona

Office: 520-626-4402
Expert Contact

Mohammed Hassan
Department of Physics, University of Arizona

Copyright © University of Arizona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Chip Technology

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Optical computing/Photonic computing

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project