Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Manufacturing advances bring material back in vogue

Dr Andy Boes from the University of Adelaide's Institute of Photonics and Advanced Sensing (right) and RMIT University’s Distinguished Professor Arnan Mitchell.

CREDIT
The University of Adelaide.
Dr Andy Boes from the University of Adelaide's Institute of Photonics and Advanced Sensing (right) and RMIT University’s Distinguished Professor Arnan Mitchell. CREDIT The University of Adelaide.

Abstract:
One of the world’s most important artificial materials is back in vogue because scientists are harnessing its properties for new and diverse future applications such as space navigation and farming.

Manufacturing advances bring material back in vogue

Adelaide, South Australia | Posted on January 20th, 2023

The University of Adelaide’s Dr Andy Boes and RMIT University’s Distinguished Professor Arnan Mitchell are leaders in developing lithium niobate (LN) to harness its exceptional properties in photonic chips.

“Lithium niobate has new uses in the field of photonics - the science and technology of light - because unlike other materials it can generate and manipulate electro-magnetic (EM) waves across the full spectrum of light, from microwave to UV frequencies,” said Dr Boes.

“Silicon was the material of choice for electronic circuits, but its limitations have become increasingly apparent in photonics. LN has come back into vogue because of its superior capabilities and advances in manufacturing mean that LN is now readily available as thin films on semiconductor wafers.”

A layer of LN about 100 times thinner than a human hair, is placed on a semiconductor wafer/substrate. Photonic circuits are printed into the LN layer which are tailored according to the chip’s intended use. A hundred different circuits may be contained inside a chip the size of a fingernail.

“The ability to manufacture integrated photonic chips from LN will have major impact on applications in technology that use every part of the spectrum of light.” said Distinguished Professor Mitchell.

“Photonic chips can now transform industries well beyond optical fibre communications.”

As there is no GPS on the Moon navigation systems in lunar rovers of the future need to use an alternative system, which is where photonic chips come in. By detecting signals in the infrared part of the spectrum a photonic chip with a laser pointed at it can measure movement without needing external signals.

Dr Boes and Distinguished Professor Mitchell brought together a team of world leaders in LN and published their review of LN’s capabilities and its potential future applications in the journal Science.

Closer to home LN technology can be used to detect how ripe fruit is. Gas emitted by ripe fruit is absorbed by light in the mid-infrared part of the spectrum. A drone hovering in an orchard would transmit light to another which would sense the degree to which the light is absorbed and when fruit is ready for harvesting. Such a system has advantages over existing technology by being smaller, easily deployed and potentially giving more information in real time to farmers.

LN was first discovered in 1949 and has been used in photonics since then but only now are these advances being realised.

“We have the technology to manufacture these chips in Australia and we have the industries that will use them,” said Distinguished Professor Mitchell.

“This is not science fiction it’s happening now and competition to harness the potential of LN photonic technology is heating up.”

####

For more information, please click here

Contacts:
Media Contact

Crispin Savage
University of Adelaide

Cell: +61 (0)481 912 465
Expert Contact

Dr Andy Boes
The University of Adelaide

Cell: +61 (0)477 291 833

Copyright © University of Adelaide

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Possible Futures

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Chip Technology

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Optical computing/Photonic computing

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Photonics/Optics/Lasers

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project