Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New insights into energy loss open doors for one up-and-coming solar tech

Headshot of Barry Rand, paper co-author

CREDIT
Andlinger Center for Energy and the Environment
Headshot of Barry Rand, paper co-author CREDIT Andlinger Center for Energy and the Environment

Abstract:
Organic solar cells are an emerging technology with a lot of promise. Unlike the ubiquitous silicon solar panel, they have the potential to be lightweight, flexible, and present a variety of colors, making them particularly attractive for urban or façade applications. However, continued advancements in device performance have been sluggish as researchers work to understand the fundamental processes underlying how organic solar cells operate.

New insights into energy loss open doors for one up-and-coming solar tech

Princeton, NJ | Posted on November 18th, 2022

Now, engineers at Princeton University and King Abdullah University of Science and Technology have described a new way to express energy loss in organic solar cells and have extended that description to make recommendations for engineering the best devices. This breakthrough could reimagine the conventional approach to constructing organic solar cells. Their work was published on November 18 in Joule.

“There was a way that energy loss in organic solar cells was traditionally described and defined. And it turns out that that description was not wholly correct,” said Barry Rand, co-author of the study and associate professor of electrical and computer engineering and the Andlinger Center for Energy and the Environment.

Rand pointed out that the traditional method for describing energy loss did not account for the presence of disorder in an organic solar cell. One type of disorder, dynamic disorder, is caused by the erratic movement of molecules at the micro level, leading to energy loss that is practically unavoidable at most temperatures. The other type, structural or static disorder, is a product of the intrinsic structures of the various materials used in an organic solar cell, as well as their arrangement inside a device.

Past research on organic solar cells that did not account for disorder in energy loss calculations yielded values around 0.6 electron volts, regardless of the device’s materials. But when Rand and his team incorporated disorder into the way they calculated energy loss and tested various devices, they found that the level of disorder played an important role in determining the overall energy loss of an organic solar cell.

“As the disorder of a solar cell increases, we see our non-radiative energy loss component — the component that we have control over — grows rapidly,” Rand said. “The non-radiative energy loss grows with the square of the disorder component.”

After demonstrating that increasing disorder causes energy loss to sharply increase in devices, the researchers were able to make recommendations for materials that minimize disorder and therefore lead to more efficient devices. Since scientists can choose the materials they use as well as how to arrange them in an organic solar cell, they have some control over the level of structural disorder in a given device.

When engineering an organic solar cell, researchers can focus on creating a homogenous mixture of materials, in which the parts of a film are either all crystalline or all amorphous, or a heterogeneous mixture, in which some parts of a film are crystalline and other parts are amorphous.

Through their work, Rand’s team demonstrated that when it comes to building organic solar cells, homogeneous mixtures reign supreme. For better-performing organic solar cells, Rand said that scientists should use either highly crystalline or highly amorphous materials and avoid mixing the two within a device.

“If you have anything in between, some heterogeneity in which parts of a film are slightly crystalline and some parts are amorphous, that's when you lose the most energy,” Rand said.

This finding breaks with convention, as researchers previously believed that some level of heterogeneity in solar cell mixtures was beneficial for overall performance. But because Rand’s team found that heterogeneous device mixtures had high levels of disorder and lost significant amounts of energy, he said that their discovery could provide new focus for researchers as they pursue more efficient organic solar cells.

“Heterogeneity has often been the focal point of devices. Some level of crystallinity was thought to be beneficial. But it turns out that that’s not what we saw,” said Rand. He pointed out that many of the top-performing organic solar cells today are composed of highly amorphous films, and suggested that with existing technologies, completely amorphous mixtures are more pragmatic than completely crystalline ones.

Although his team’s research primarily sought to understand the science behind organic solar cells, Rand is hopeful that others can use their work to build more efficient devices and ultimately reach new performance benchmarks for this promising solar technology.

“This discovery is another aspect of organic solar cells that we can add to what we already know, which will help us improve their efficiency going forward,” Rand said.

####

For more information, please click here

Contacts:
Media Contact

Colton Poore
Princeton University, Andlinger Center for Energy and the Environment

Office: 609-258-3126
@AndlingerCenter
Expert Contact

Barry Rand
Princeton University, Andlinger Center for Energy and the Environment

Copyright © Princeton University Engineering School

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, “Quantifying the Effect of Energetic Disorder on Organic Solar Cell Energy Loss,” was published in Joule on November 18. Besides Rand, authors include Saeed-Uz-Zaman Khan, a former graduate student in electrical and computer engineering who is now at ASML; and Manting Gui of Princeton University; and Jules Bertrandie, Anirudh Sharma, Wejdan Alsufyani, Julien F. Gorenflot, Frédéric Laquai, and Derya Baran of King Abdullah University of Science and Technology. Support for the research was provided by the U.S. Department of Energy, Office of Basic Energy Sciences and King Abdullah University of Science and Technology Office of Sponsored Research:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Organic Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Towards highly conducting molecular materials with a partially oxidized organic neutral molecule: In an unprecedented feat, researchers from Japan develop an organic, air-stable, highly conducting neutral molecular crystal with unique electronic properties January 20th, 2023

Scientists have proposed a new material for perovskite solar cells: It is cheaper its analogues, easier to manufacture and to modify October 28th, 2022

Flexing the power of a conductive polymer: A new material holds promise for the next generation of organic electronics June 24th, 2022

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project