Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Putting a new theory of many-particle quantum systems to the test: Experiments show that generalized hydrodynamics accurately simulates an out-of-equilibrium quantum system

New experiments using trapped one-dimensional quantum gases fit with the predictions of the recently developed theory of generalized hydrodynamics. Graph showing the time evolution of the quasiparticle momentum distribution—a property of the atoms in the gases—in a bundle of one-dimensional gases. The experimental data (red lines) nearly perfectly match the predictions of generalized hydrodynamics theory (blue lines).

CREDIT
Weiss Laboratory, Penn State
New experiments using trapped one-dimensional quantum gases fit with the predictions of the recently developed theory of generalized hydrodynamics. Graph showing the time evolution of the quasiparticle momentum distribution—a property of the atoms in the gases—in a bundle of one-dimensional gases. The experimental data (red lines) nearly perfectly match the predictions of generalized hydrodynamics theory (blue lines). CREDIT Weiss Laboratory, Penn State

Abstract:
New experiments using trapped one-dimensional gases—atoms cooled to the coldest temperatures in the universe and confined so that they can only move in a line—fit with the predictions of the recently developed theory of “generalized hydrodynamics.” Quantum mechanics is necessary to describe the novel properties of these gases. Achieving a better understanding of how such systems with many particles evolve in time is a frontier of quantum physics. The result could greatly simplify the study of quantum systems that have been excited out of equilibrium. Besides its fundamental importance, it could eventually inform the development of quantum-based technologies, which include quantum computers and simulators, quantum communication, and quantum sensors. A paper describing the experiments by a team led by Penn State physicists appears September 2, 2021 in the journal Science.

Putting a new theory of many-particle quantum systems to the test: Experiments show that generalized hydrodynamics accurately simulates an out-of-equilibrium quantum system

University Park, PA | Posted on September 3rd, 2021

Even within classical physics, where the additional complexities of quantum mechanics can be ignored, it is impossible to simulate the motion of all the atoms in a moving fluid. To approximate these systems of particles, physicists use hydrodynamics descriptions.

“The basic idea behind hydrodynamics is to forget about the atoms and consider the fluid as a continuum,” said Marcos Rigol, professor of physics at Penn State and one of the leaders of the research team. “To simulate the fluid, one ends up writing coupled equations that result from imposing a few constraints, such as the conservation of mass and energy. These are the same types of equations solved, for example, to simulate how air flows when you open windows to improve ventilation in a room.”

Matter becomes more complicated if quantum mechanics is involved, as is the case when one wants to simulate quantum many-body systems that are out of equilibrium.

“Quantum many body systems—which are composed of many interacting particles, such as atoms—are at the heart of atomic, nuclear, and particle physics,” said David Weiss, Distinguished Professor of Physics at Penn State and one of the leaders of the research team. “It used to be that except in extreme limits you couldn’t do a calculation to describe out-of-equilibrium quantum many-body systems. That recently changed.”

The change was motivated by the development of a theoretical framework known as generalized hydrodynamics.

“The problem with those quantum many-body systems in one dimension is that they have so many constraints on their motion that regular hydrodynamics descriptions cannot be used,” said Rigol. “Generalized hydrodynamics was developed to keep track of all those constraints.”

Until now, generalized hydrodynamics had only previously been experimentally tested under conditions where the strength of interactions among particles was weak.

“We set out to test the theory further, by looking at the dynamics of one dimensional gases with a wide range of interaction strengths,” said Weiss. “The experiments are extremely well controlled, so the results can be precisely compared to the predictions of this theory.

The research team uses one dimensional gases of interacting atoms that are initially confined in a very shallow trap in equilibrium. They then very suddenly increase the depth of the trap by 100 times, which forces the particles to collapse into the center of the trap, causing their collective properties to change. Throughout the collapse, the team precisely measures their properties, which they can then compare to the predictions of generalized hydrodynamics.

“Our measurements matched the prediction of theory across dozens of trap oscillations,” said Weiss. “There currently aren’t other ways to study out-of-equilibrium quantum systems for long periods of time with reasonable accuracy, especially with a lot of particles. Generalized hydrodynamics allow us to do this for some systems like the one we tested, but how generally applicable it is still needs to be determined.”

###

In addition to Weiss and Rigol, the research team includes Neel Malvania, Yicheng Zhang, and Yuan Le at Penn State; and Jerome Dubail at Université de Lorraine in France. The research was funded by the U.S. National Science Foundation and the U.S. Army Research Office.

####

For more information, please click here

Contacts:
Sam Sholtis


Office: 814-865-1390
Expert Contacts

David Weiss


Office: (814) 863-3076
Marcos Rigol


Office: (814) 865-6460

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Quantum Physics

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Quantum chemistry

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics: Coupling of electronic and nuclear dynamics revealed in molecules with ultrafast lasers and X-rays July 21st, 2023

Govt.-Legislation/Regulation/Funding/Policy

New chip opens door to AI computing at light speed February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Possible Futures

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Quantum Computing

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

A new qubit platform is created atom by atom October 6th, 2023

Discoveries

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Superbug killer: New synthetic molecule highly effective against drug-resistant bacteria February 16th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Announcements

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Military

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project