Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New boron material of high hardness created by plasma chemical vapor deposition: The goal is material that approaches a diamond in hardness and can survive extreme pressure, temperature and corrosive environments

This is Yogesh Vohra.

CREDIT
UAB
This is Yogesh Vohra. CREDIT UAB

Abstract:
Yogesh Vohra, Ph.D., uses microwave-plasma chemical vapor deposition to create thin crystal films of never-before-seen materials. This effort seeks materials that approach a diamond in hardness and are able to survive extreme pressure, temperature and corrosive environments. The search for new materials is motivated by the desire to overcome limitations of diamond, which tends to oxidize at temperatures higher than 600 degrees Celsius and also chemically reacts with ferrous metals.

New boron material of high hardness created by plasma chemical vapor deposition: The goal is material that approaches a diamond in hardness and can survive extreme pressure, temperature and corrosive environments

Birmingham, AL | Posted on April 17th, 2020

Vohra, a professor and university scholar in the University of Alabama at Birmingham Department of Physics, now reports, in the journal Scientific Reports, synthesis of a novel boron-rich boron-carbide material. This film, grown on a 1-inch wafer of silicon, is chemically stable, has 37 percent the hardness of cubic diamond and acts as an insulator.

Equally important, experimental testing of the new material -- including X-ray diffraction and measurement of the material's hardness and Young's modulus -- agrees closely with predicted values computed by the UAB team of researchers led by Cheng-Chien Chen, Ph.D., assistant professor of physics at UAB. The predicted values come from first-principles analysis, which uses supercomputer-driven density functional theory calculations of positively charged nuclei and negatively charged electrons. Thus, Vohra, Chen and colleagues have both made a novel boron-carbon compound and have shown the predictive power of first principles analysis to foretell the properties of these materials.

The new material has the chemical formula B50C2, which means 50 atoms of boron and two atoms of carbon in each subunit of the crystal structure. The crucial issue is where the two carbon atoms are placed in each crystal subunit; insertion of the carbons at other sites leads to materials that are unstable and metallic. The precise placement of carbons is achieved by varying growth conditions.

The current B50C2 material was grown in a microwave plasma chemical vapor deposition system using hydrogen as the carrier gas and diborane -- 90 percent hydrogen gas, 10 percent B2H6 and parts per million carbon -- as the reactive gas. Samples were grown at a low pressure equivalent to the atmospheric pressure 15 miles above Earth. The substrate temperature was about 750 degrees Celsius.

"Boron-rich boron-carbide materials synthesis by chemical vapor deposition methods continues to be relatively unexplored and a challenging endeavor," Vohra said. "The challenge is to find the correct set of conditions that are favorable for growth of the desired phase."

"Our present studies provide validation of the density functional theory in predicting stable crystal structure and providing a metastable synthesis pathway for boron-rich boron-carbide material for applications under extreme conditions of pressure, temperature and corrosive environments."

###

Co-authors with Vohra and Chen for the paper, "First-principles predictions and synthesis of B50C2 by chemical vapor deposition," are Paul A. Baker, Wei-Chih Chen and Shane A. Catledge, UAB Department of Physics.

Support came from the National Science Foundation under cooperative agreement OIA1655280, with the help of NSF Major Research Instrumentation grant DMR1725016.

####

For more information, please click here

Contacts:
Jeff Hansen

205-209-2355

Copyright © University of Alabama at Birmingham

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Tools

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project