Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New boron material of high hardness created by plasma chemical vapor deposition: The goal is material that approaches a diamond in hardness and can survive extreme pressure, temperature and corrosive environments

This is Yogesh Vohra.

CREDIT
UAB
This is Yogesh Vohra. CREDIT UAB

Abstract:
Yogesh Vohra, Ph.D., uses microwave-plasma chemical vapor deposition to create thin crystal films of never-before-seen materials. This effort seeks materials that approach a diamond in hardness and are able to survive extreme pressure, temperature and corrosive environments. The search for new materials is motivated by the desire to overcome limitations of diamond, which tends to oxidize at temperatures higher than 600 degrees Celsius and also chemically reacts with ferrous metals.

New boron material of high hardness created by plasma chemical vapor deposition: The goal is material that approaches a diamond in hardness and can survive extreme pressure, temperature and corrosive environments

Birmingham, AL | Posted on April 17th, 2020

Vohra, a professor and university scholar in the University of Alabama at Birmingham Department of Physics, now reports, in the journal Scientific Reports, synthesis of a novel boron-rich boron-carbide material. This film, grown on a 1-inch wafer of silicon, is chemically stable, has 37 percent the hardness of cubic diamond and acts as an insulator.

Equally important, experimental testing of the new material -- including X-ray diffraction and measurement of the material's hardness and Young's modulus -- agrees closely with predicted values computed by the UAB team of researchers led by Cheng-Chien Chen, Ph.D., assistant professor of physics at UAB. The predicted values come from first-principles analysis, which uses supercomputer-driven density functional theory calculations of positively charged nuclei and negatively charged electrons. Thus, Vohra, Chen and colleagues have both made a novel boron-carbon compound and have shown the predictive power of first principles analysis to foretell the properties of these materials.

The new material has the chemical formula B50C2, which means 50 atoms of boron and two atoms of carbon in each subunit of the crystal structure. The crucial issue is where the two carbon atoms are placed in each crystal subunit; insertion of the carbons at other sites leads to materials that are unstable and metallic. The precise placement of carbons is achieved by varying growth conditions.

The current B50C2 material was grown in a microwave plasma chemical vapor deposition system using hydrogen as the carrier gas and diborane -- 90 percent hydrogen gas, 10 percent B2H6 and parts per million carbon -- as the reactive gas. Samples were grown at a low pressure equivalent to the atmospheric pressure 15 miles above Earth. The substrate temperature was about 750 degrees Celsius.

"Boron-rich boron-carbide materials synthesis by chemical vapor deposition methods continues to be relatively unexplored and a challenging endeavor," Vohra said. "The challenge is to find the correct set of conditions that are favorable for growth of the desired phase."

"Our present studies provide validation of the density functional theory in predicting stable crystal structure and providing a metastable synthesis pathway for boron-rich boron-carbide material for applications under extreme conditions of pressure, temperature and corrosive environments."

###

Co-authors with Vohra and Chen for the paper, "First-principles predictions and synthesis of B50C2 by chemical vapor deposition," are Paul A. Baker, Wei-Chih Chen and Shane A. Catledge, UAB Department of Physics.

Support came from the National Science Foundation under cooperative agreement OIA1655280, with the help of NSF Major Research Instrumentation grant DMR1725016.

####

For more information, please click here

Contacts:
Jeff Hansen

205-209-2355

Copyright © University of Alabama at Birmingham

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Thin films

FEFU scientists are paving way for future tiny electronics and gadgets August 28th, 2020

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I) June 19th, 2020

Transparent graphene electrodes might lead to new generation of solar cells: New roll-to-roll production method could enable lightweight, flexible solar devices and a new generation of display screens June 8th, 2020

Self-powered X-ray detector to revolutionize imaging for medicine, security and research: 2D perovskite thin films boost sensitivity 100-fold compared to conventional detectors, require no outside power source, and enable low-dose dental and medical images April 12th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Possible Futures

Emergence of a new heteronanostructure library May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Discoveries

Emergence of a new heteronanostructure library May 14th, 2021

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Materials/Metamaterials

Silver ions hurry up, then wait as they disperse: Rice chemists show ions’ staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Oregon scientists create mechanism to precisely control soundwaves in metamaterials: Theoretical modeling shows that designer materials incorporating drum-like membranes allow precise stoppage and reversal of sound pulses April 16th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Announcements

Emergence of a new heteronanostructure library May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Tools

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

World's first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

New Cypher VRS1250 Video-Rate Atomic Force Microscope Enables True Video-Rate Imaging at up to 45 Frames per Second April 30th, 2021

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

Aerospace/Space

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

A silver lining for extreme electronics April 30th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project