Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > An Archimedes' screw for groups of quantum particles

Abstract:
Anyone who has tried to lead a group of tourists through a busy city knows the problem. How do you keep the group together when they are constantly jostled, held up and distracted by the hubbub around them?

An Archimedes' screw for groups of quantum particles

Singapore | Posted on November 19th, 2016

It's a problem the designers of quantum computers have to tackle. In some future quantum computers, information will be encoded in the delicate quantum states of groups of particles. These face jostling by noise and disorder within the materials of the processor. Now, an international team has proposed a scheme that could help protect groups of particles and enable them to move together without any getting lost or held up.

The proposal, published 17 November in Physical Review Letters, comes from researchers at the National University of Singapore (NUS), Technical University of Crete, University of Oxford and Google. Their paper puts forward a scheme that can reliably transport quantum states of a few photons along a line of miniature quantum circuits. Simulations show that it should efficiently move a three-photon state from one circuit site to the next over dozens of sites: the particles jump together throughout and finally appear at the other end undisturbed, with no spreading out.

The scheme is based on the ideas of physicist David J. Thouless, who won half the 2016 Nobel Prize in physics for his work on topological effects in materials. Topological effects are to do with geometry, and their use in quantum computing can help protect fragile quantum states during processing.

One of Thouless' major contributions was the invention of 'topological pumping'. This works something like Archimedes' screw pump for water. The Ancient Greek's screw spins around, but the water within it travels in a straight line up a hill. "Even though the motion of the machine is cyclical, the motion of the particles is not, they move in a line," explains Jirawat Tangpanitanon, first author on the paper and a PhD student in the group of Dimitris Angelakis at the Centre for Quantum Technologies (CQT) at NUS.

In the quantum scheme, the screw thread is not a physical structure but an oscillating external field imposed on the particles by electronic control over the device that contains them.

Angelakis started his group looking into topological pumping after others in 2015 demonstrated the effect for individual, non-interacting, particles. Angelakis, Tangpanitanon and Research Fellow Victor Bastidas wanted to find out if it would be possible to move groups of particles coherently too.

The answer is yes. What's more, unlike Archimedes' pump, which can only move water one way, the quantum particles can even be sent into reverse by changing the initial conditions. "It's like a moonwalk," jokes Tangpanitanon. It looks like everything should be moving forward, but instead the particles go backwards due to quantum effects.

Co-author Pedram Roushan - part of the Google group in Santa Barbara, California building superconducting circuits for quantum computing - and the team hopes to see the idea implemented in similar hardware. "This paper is almost a blueprint. We developed the proposal to match existing devices," says Angelakis, who is a Principal Investigator at CQT and a faculty member at the Technical University of Crete.

This research is supported by Singapore Ministry of Education Academic Research Fund Tier 3 (Grant No. MOE2012-T3-1-009), National Research Foundation (NRF) Singapore and the Ministry of Education, Singapore under the Research Centres of Excellence programme. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) Grant Agreement No. 319286 Q-MAC and UK Engineering and Physical Sciences Research Council (EPSRC) funding EP/K038311/1.

####

For more information, please click here

Contacts:
Jenny Hogan


Researcher Contact:
Dimitris Angelakis
Principal Investigator, Centre for Quantum Technologies, National University of Singapore
Assistant Professor, Technical University of Crete, Greece

+65 6601 1468

Copyright © Centre for Quantum Technologies at the National University of Singapore

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: Jirawat Tangpanitanon et al, 'Topological Pumping of Photons in Nonlinear Resonator Arrays', Physical Review Letters 117, 213603 (2016) :

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Chip Technology

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Quantum Computing

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project