Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Infrared encoding of images with metasurfaces: French researchers have demonstrated subwavelength control of thermal emissivity at the subwavelength scale -- allowing them to encode images in infrared signals

This is a picture of a visible sample and its emission response at several polarizations and wavelengths.
CREDIT: M. Makhsiyan/ONERA
This is a picture of a visible sample and its emission response at several polarizations and wavelengths.

CREDIT: M. Makhsiyan/ONERA

Abstract:
Researchers at MINAO, a joint lab between The French Aerospace Lab in Palaiseau and the Laboratoire de Photonique et de Nanostructures in Marcoussis, have recently demonstrated metamaterial resonators that allow emission in the infrared to be tuned through the geometry of the resonator.

Infrared encoding of images with metasurfaces: French researchers have demonstrated subwavelength control of thermal emissivity at the subwavelength scale -- allowing them to encode images in infrared signals

Washington, DC | Posted on December 25th, 2015

Their setup uses sub-wavelength scale metal-insulator-metal, or MIM, resonators to spatially and spectrally control emitted light up to its diffraction limit. This allows an array of resonators to be used to form an image in the infrared -- much as way the pixels in a television screen can form a visible light image -- with potential breakthrough applications in infrared televisions, biochemical sensing, optical storage, and anti-counterfeit devices.

"MIM metasurfaces are great candidates for infrared emitters thanks to their ability to completely control thermal emission, which is groundbreaking compared to the usual thermal sources, such as a blackbody," said Patrick Bouchon, a researcher at The French Aerospace Lab, also known as ONERA. "Moreover, this study shows the possibility to create infrared images with the equivalent of visible colors."

Bouchon and his colleagues detail their work this week in Applied Physics Letters, from AIP Publishing. The researchers previously demonstrated the ability to manipulate light through tailoring its absorption or converting its polarization, and have investigated the 'funneling effect,' in which incoming light energy is coupled to a nanoantenna.

Much as its name implies, a metal-in-metal, or MIM, nanoantenna consists of a rectangular metallic patch on top of an insulating material, atop another metallic layer. According to Bouchon, most metasurfaces -- the aggregate of many nanoantennas on a substrate -- are periodic repetitions of a given pattern, and exhibit no spatial modulation. Additionally, the idea of modifying the emissivity with nanostructures is relatively recent - the possibility to combine several antennas in the same subwavelength period was first shown by their team in 2012.

For their MIMs, Bouchon and his colleagues deposited 50 nanometer-thick rectangular patches of gold on top of a 220 nanometer silicon oxide layer, which sat atop an opaque 200 nanometer gold layer.

"We had to theoretically predict the response of 100 million antennas, and to subsequently fabricate it," said Mathilde Makhsiyan, a PhD student at The French Aerospace Lab. To do this, the researchers developed their own electromagnetic software, as well as specific software to generate the e-beam files for the fabrication of spatially modulated emissivity metasurfaces.

Once fabricated, each nanoantenna acts as an independent deep subwavelength emitter for a given polarization and wavelength. This allows it to control emission properties such as wavelength, polarization, and intensity with its specific geometry and orientation. When juxtaposed on a large scale, these MIMS cause the emissivity to be defined at the sub-wavelength scale, allowing the researchers to encode several images on the same metasurface.

This emission information is encoded in a unit cell that has a size smaller than that of the wavelength, on account of the effect of the antennas' varied geometries and orientations on how the information is encoded. Because of this, two neighboring cells can possess different encoded information and encode the information spatially. This ultimately allows for the creation of a static infrared image, similar to an LCD screen.

Future work for Bouchon and his colleagues includes independently controlling each of these pixels to create a dynamic emission of light -- a first step towards an infrared TV -- as well as creating a start-up business to develop anti-counterfeit devices.

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology.

apl.aip.org

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, 'Shaping the spatial and spectral emissivity at the diffraction limit,' is authored by Mathilde Makhsiyan, Patrick Bouchon, Julien Jaeck, Jean-Luc Pelouard, and Riad Haidar. It will appear in the journal Applied Physics Letters on Dec. 22, 2015 (DOI: 10.1063/1.4937453) After that date, it can be accessed at:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project