Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Electron partitioning process in graphene observed, a world first: Toward the realization of electron interferometer devices which utilize the wave nature of electrons

This is the result of the shot noise measured in our device. Non-zero shot noise due to the electron partition process is observed in the p-n junction case (red dots). On the other hand, there appears no noise in the unipolar regime (blue dots).
CREDIT: Osaka University
This is the result of the shot noise measured in our device. Non-zero shot noise due to the electron partition process is observed in the p-n junction case (red dots). On the other hand, there appears no noise in the unipolar regime (blue dots).

CREDIT: Osaka University

Abstract:
Graphene, a single atomic layer of graphite with a carbon-layered structure, has been drawing much attention because of its abundant electronic properties and the possibilities of application due to its unique electronic structure. Andre Geim and Konstantin Novoselov extracted single-atom-thick crystallites from bulk graphite in 2004 for the first time. This results earned them the Nobel Prize in physics 2010.

Electron partitioning process in graphene observed, a world first: Toward the realization of electron interferometer devices which utilize the wave nature of electrons

Osaka, Japan | Posted on November 19th, 2015

A group of researchers from Osaka University, the University of Tokyo, Kyoto University, and the National Institute for Materials Science precisely examined current-fluctuation ("shot noise") in the graphene p-n junction in the Quantum Hall (QH) regime and succeeded in observing electron partitioning taking place on the region along the p-n junction as current fluctuation. (See upper-left of Figure 1. Electron Partition Process.)

In addition, this group also clarified that electron partitioning did not take place under the absence of the p-n junction even in the QH regime.

It is expected that this group's achievement will lead to the clarification of the electron partition process in the graphene p-n junction in the QH regime because of its spin freedom and valley freedom and the realization of electron interference devices using the graphene p-n junction in the QH regime.

Kensuke Kobayashi (Professor, Graduate School of Science, Osaka University) and Sadashige Matsuo (Assistant Professor, Graduate School of Engineering, The University of Tokyo), in cooperation with research groups led by Teruo Ono (Professor, Institute for Chemical Research, Kyoto University) and Kazuhito Tsukagoshi (Research Fellow, International Center for Materials Nanoarchitectonics, National Institute for Materials Science), produced graphene samples capable of forming p-n junctions by combining gate electrodes and performed precise measurements of current-fluctuation ("shot noise") in the graphene p-n junction in the QH regime in the strong magnetic fields and at low temperatures.

As shown by Figure 1, this group clarified that while shot noise took place in the graphene p-n junction in the QH regime, shot noise did not take place in the absence of the graphene p-n junction. This group also verified that the quantity of the observed shot noise was nearly consistent with theoretical predictions.

These results directly demonstrated for the first time in the world that electron partitioning took place in the p-n junction in the QH regime, and microscopic characteristics of electron partitioning taking place in the graphene p-n junction were quantitatively established for the first time.

This research was published in the electronic version of Nature Communications (UK) on September 4, 2015. Furthermore, results closely related to this group's research results were simultaneously published in the Nature Communications by a joint group of researchers from Nippon Telegraph and Telephone Corporation (NTT) and French research institutes. The latter research was performed totally independently from the former research, thus, it is noteworthy that the world's first research results were simultaneously announced from the two separate Japanese research teams.

####

For more information, please click here

Contacts:
Saori Obayashi

81-661-055-886

Copyright © Osaka University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Quantum nanoscience

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project