Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs)

This is a photograph of the SQUID-based food contaminant detection system.

Copyright (C) 2015 Toyohashi University Of Technology. All Rights Reserved.
This is a photograph of the SQUID-based food contaminant detection system.

Copyright (C) 2015 Toyohashi University Of Technology. All Rights Reserved.

Abstract:
The detection of metallic contaminants in foods is important for our health and safety.

However, existing inspection methods have limitations. For instance, the X-ray radiation method cannot detect contaminants with sizes smaller than 1 mm with current practical X-ray levels, and it cannot be applied for the inspection of foods that have lactic acid bacteria because X-ray radiation causes ionization of such foods.

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs)

Toyohashi, Japan | Posted on July 29th, 2015

In this context, recently, researchers at the Department of Environmental and Life Sciences at Toyohashi Tech have developed a practical magnetic metallic contaminant detector using three high-Tc RF superconducting quantum interference devices (SQUIDs) for food inspection.

The detection technique is based on recording the remnant magnetic field of a contaminant using SQUID sensors. SQUID is a high-sensitivity magnetic sensor based on the superconductivity phenomenon.

In the process, a strong magnetic field is applied to food to magnetize the metal fragments inside, and subsequently, these metals, if they are contained in the food, can be detected by sensing their magnetic fields using SQUID sensors. This method is advantageous in the sense that it is both safe and provides a high resolution.

Professor Tanaka, whose team has developed the method, says, "We have developed an inspection system that permits contaminant detection in a food package with a height of 100 mm with three high-Tc RF SQUIDs. To accurately detect even smaller metallic fragments, digital filters have also been used to improve the signal-to-noise ratio. The target size of the metallic contaminant in food with a stand-off distance of 100 mm is 0.5 mm."

He continued, "To reduce the impact of noise as much as possible, the sensor is placed inside a square metallic box designed such that food can be tested as it passes through this box. The box is made of 2-mm iron-nickel alloy plates. Magnetic fields have strong affinities to this iron-nickel alloy. Thus, magnetic fields around the sensor are concentrated in the walls of this box."

In experiments, the developed system was able to clearly detect a steel ball with a diameter as small as 0.3 mm. The system was robust and not affected by electromagnetic waves from nearby mobile phones or from the motion of nearby steel objects. Therefore, the system is a promising tool to detect contaminants in practical situations, and it can significantly aid in enhancing consumer health and safety.

###

This study is featured in the July 2015 issue of TUT Research: e-newsletter from Toyohashi University of Technology:

www.tut.ac.jp/english/newsletter/contents/2015/01/features/features.html TUT Research is an online quarterly magazine to introduce cutting-edge research in Toyohashi Tech.

Reference:

S. Tanaka, T. Ohtani, Y. Narita, Y. Hatsukade, and S. Suzuki, "Development of metallic contaminant detection system using RF High-Tc SQUIDs for food inspection," IEEE Trans. Appl. Supercond. Vol. 25, no. 3, June 2015, Art. ID. 1601004.

####

About Toyohashi University of Technology
Toyohashi University of Technology, which was founded in 1976 as a National University of Japan, is a leading research institute in the fields of mechanical engineering, advanced electronics, information sciences, life sciences, and architecture.

For more information, please click here

Contacts:
Michiteru Kitazaki


Toyohashi University of Technology
1-1 Hibarigaoka, Tempaku
Toyohashi, Aichi Prefecture 441-8580, JAPAN
Inquiries: Committee for Public Relations

Copyright © Toyohashi University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

Quantum nanoscience

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project