Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanocrystalline Thin-film Solar Cells

Under the project “NanoSolar”, KIT researchers want to specifically adjust smallest crystals of the perovskite mineral and integrate them into solar cells. Figure: Holger Röhm
Under the project “NanoSolar”, KIT researchers want to specifically adjust smallest crystals of the perovskite mineral and integrate them into solar cells.

Figure: Holger Röhm

Abstract:
The efficiency of perovskite-based solar cells was improved significantly in the past years. On the way towards maturity, however, some challenges remain to be mastered. Researchers of Karlsruhe Institute of Technology (KIT) seek to advance the development of perovskite solar cells. By means of special thin-film processes, for example, material consumption and costs can be reduced. An interdisciplinary team of scientists will study solutions for the production of the new photovoltaic components under the “NanoSolar” project in the next three years.

Nanocrystalline Thin-film Solar Cells

Karlsruhe, Germany | Posted on July 15th, 2015

Perovskite-based solar cells experienced an unprecedented development in the past years. Within only five years, their efficiency was increased considerably. Meanwhile, they convert more than 20% of solar irradiation into electric power. Low material costs and small amounts of material required – thanks to the thin-film technology – make perovskite solar cells a promising alternative. Costs for the conversion of sunlight into electric power can be reduced. A major drawback of the technology, however, is the use of environmentally harmful lead compounds for the production of the perovskite crystals. “We are looking for a way to apply non-toxic materials ,” Dr. Alexander Colsmann says. He heads the Organic Photovoltaics Unit of the KIT Light Technology Institute (LTI). The physicist points out that perovskite solar cells might not only be suited for large-scale electricity production, but also for decentralized power supply, if sustainable and environmentally friendly production processes can be established. “Thin-film solar cells have a very homogeneous appearance and, hence, can be used as facade cladding, for instance,” Colsmann says. He emphasizes that development of environmentally friendly perovskite solar cells is not only required for sustainability reasons, but also a major prerequisite for their economic success.

The project “NanoSolar – Kontrollierte Abscheidung von Nanokristallen für Perowskit-Solarzellen” (NanoSolar – Controlled Deposition of Nanocrystals for Perovskite Solar Cells) is carried out by scientists of the LTI unit of Dr. Alexander Colsmann and of the Institute for Inorganic Chemistry (unit of Professor Dr. Claus Feldmann). The interdisciplinary team consists of physicists, chemists, material scientists, and engineers. They want to specifically adjust nanoscaled crystal structures and to develop novel, environmentally friendly materials and processes for the production of perovskite and its integration into solar cells.

The researchers study the complete process from the synthesis of the materials to the demonstrator module, i.e. a functioning solar cell. Similar to organic solar cells, the perovskite solar cells are produced by printing and coating processes. “NanoSolar” combines fundamental research with application-oriented science. To understand the fundamentals of the new technology, the scientists study and optimize the structure-property relationship of the materials. The “NanoSolar” project is scheduled for a duration of three years and supported with EUR 530,000 by the Baden-Württemberg Foundation under the research program "Funktionelle Oberflächen und Materialien für eine nachhaltige Energieversorgung” (Functional surfaces and materials for sustainable energy supply).

####

About Karlsruhe Institute of Technology
Karlsruhe Institute of Technology (KIT) is a public corporation pursuing the tasks of a Baden-Wuerttemberg state university and of a national research center of the Helmholtz Association. The KIT mission combines the three core tasks of research, higher education, and innovation. With about 9,400 employees and 24,500 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

Since 2010, the KIT has been certified as a family-friendly university.

For more information, please click here

Contacts:
Monika Landgraf
Pressestelle
+49 721 608 47414

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project