Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Super graphene can help treat cancer

Student Elise Ramleth Østli and PhD candidate Federico Mazzola check their experiment. As part of her master's project at NTNU, Elise Ramleth Østli spent time in Stockholm, studying the tubes used with intravenous catheters. Back at NTNU, she contacted Justin Wells at the Department of Physics, asking if he was interested in continuing studies on these types of medical materials. Photo: Per Henning/NTNU
Student Elise Ramleth Østli and PhD candidate Federico Mazzola check their experiment. As part of her master's project at NTNU, Elise Ramleth Østli spent time in Stockholm, studying the tubes used with intravenous catheters. Back at NTNU, she contacted Justin Wells at the Department of Physics, asking if he was interested in continuing studies on these types of medical materials.

Photo: Per Henning/NTNU

Abstract:
Silver is often used as a coating on medical equipment used for chemotherapy. The problem is that this silver coating can break down drugs. Now, researchers have found a graphene coating that will help boost chemotherapy's effects.

Super graphene can help treat cancer

Gloshaugen, Norway | Posted on July 10th, 2015

Chemotherapy treatment usually involves the patient receiving medicine through an intravenous catheter. These catheters, as well as the the equipment attached to them, are treated with a silver coating which is antibacterial, preventing bacterial growth and unwanted infections during a treatment.

Researchers at the Norwegian University of Science and Technology's (NTNU) Department of Physics are now studying what happens when different drugs come in contact with this silver coating.

Silver breaks down chemotherapy drugs
“We wanted to find potential problem sources in the tubes used in intravenous catheters. An interaction between the coating and the drugs was one possibility. Chemotherapy drugs are active substances, so it isn’t hard to imagine that the medicine could react with the silver,” says Justin Wells, an associate professor of physics at NTNU.

Wells and his students used x-ray photoemission spectroscopy (XPS) to look at the surface chemistry of one of the most commonly used chemotherapy drugs, 5-Fluorouracil (5-Fu), and the interaction between it and the type of silver coating found in medical equipment.

Using an XPS instrument at the synchrotron lab MAX IV in Sweden, they found that the antibacterial silver coating actually breaks down the drugs. Not only does this reduce the effect of a chemotherapy treatment, but it also creates hydrogen fluoride, a gas that can be harmful both to the patients and to the medical equipment.

“Reactions between chemotherapy drugs and other substances that the drugs come in contact with have, as far as we know, never been studied like this before,” Wells says. It has always been assumed that the drugs reach the body fully intact.

Magical material
The group continued their studies with the XPS instrument, now examining how the same chemotherapy drugs reacted with graphene.

“Graphene is a non-reactive substance, and is sometimes referred to as a magical material that can solve any problem. So we thought that it might be a good combination with the chemotherapy drugs,” Wells explains.

And they were right— the drugs did not react with the graphene.

Graphene has already been suggested as a coating for medical equipment, and according to researchers, it should be possible to create thin layers of graphene designed for this use.

“This research has produced valuable information about the interaction between chemotherapy drugs and other substances that the medicine is in contact with. We hope that our work will contribute to making cancer treatment more effective, and that we can continue our work in this area. We would like to study the reaction between chemotherapy drugs and other substances and coatings used on medical equipment,” Wells concludes.

Full bibliographic information

Graphene coatings for chemotherapy: avoiding silver-mediated degradation.2D Materials Volume 2, Number 2
Federico Mazzola, Thuat Trinh, Simon Cooil, Elise Ramleth Østli4, Kristin Høydalsvik, Eirik Torbjørn Bakken Skjønsfjell, Signe Kjelstrup, Alexei Preobrajenski, Attilio A Cafolla, D Andrew Evans

####

About The Norwegian University of Science and Technology (NTNU)
The Norwegian University of Science and Technology (NTNU) is Norway's primary institution for educating the nation's future engineers and scientists. The university also has strong programmes in the social sciences, teacher education, the arts and humanities, medicine, architecture and fine art. NTNU's cross-disciplinary research delivers creative innovations that have far-reaching social and economic impact and help contribute to a better world.

For more information, please click here

Contacts:
Justin Wells
Norwegian University of Science and Technology, Department of Physics
+47 73593428

Copyright © AlphaGalileo Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Cancer

University of Toronto researchers discover new lipid nanoparticle that shows muscle-specific mRNA delivery, reduces off-target effects: Study findings make significant contribution to generating tissue-specific ionizable lipids and prompts rethinking of mRNA vaccine design princi December 8th, 2023

Super-efficient laser light-induced detection of cancer cell-derived nanoparticles: Skipping ultracentrifugation, detection time reduced from hours to minutes! October 6th, 2023

The medicine of the future could be artificial life forms October 6th, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project