Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Leti Demos New Process to Fabricate High-brightness Micro-LED Arrays for Next-gen Head-mounted and Head-up Displays: Gallium-nitride (GaN) and Indium Gallium-nitride (InGaN) Technology Targets Fast-growing Markets for Wearable Vision Systems

Abstract:
CEA-Leti today announced that it has demonstrated a path to fabricating high-density micro-LED arrays for the next generation of wearable and nomadic systems in a process that is scalable to the IC manufacturing process.

Leti Demos New Process to Fabricate High-brightness Micro-LED Arrays for Next-gen Head-mounted and Head-up Displays: Gallium-nitride (GaN) and Indium Gallium-nitride (InGaN) Technology Targets Fast-growing Markets for Wearable Vision Systems

Grenoble, France | Posted on June 2nd, 2015

The high-brightness, enhanced-vision systems such as head-up and head-mounted displays can improve safety and performance in fields such as aeronautics and automotive, where the displays allow pilots and drivers to receive key navigation data and information in their line of sight. For consumers, smart glasses or nomadic projection devices with augmented reality provide directions, safety updates, advertisements and other information across the viewing field. LED microdisplays are ideally suited for such wearable systems because of their low footprint, low power consumption, high-contrast ratio and ultra-high brightness.

Leti researchers have developed gallium-nitride (GaN) and indium gallium-nitride (InGaN) LED technology for producing high-brightness, emissive microdisplays for these uses, which are expected to grow dramatically in the next three to five years. For example, the global research firm MarketsandMarkets forecasts the market for head-up displays alone to grow from $1.37 billion in 2012 to $8.36 billion in 2020.

“Currently available microdisplays for both head-mounted and compact head-up applications suffer from fundamental technology limitations that prevent the design of very low-weight, compact and low-energy-use products,” said Ludovic Poupinet, head of Leti’s Optics and Photonics Department. “Leti’s technology breakthrough is the first demonstration of a high-brightness, high-density micro-LED array that overcomes these limitations and is scalable to a standard microelectronic large-scale process. This technology provides a low-cost, leading-edge solution to companies that want to target the fast-growth markets for wearable vision systems.”

Announced during Display Week 2015 in San Jose, Calif., Leti’s technology innovation is based on micro-LED arrays that are hybridized on a silicon backplane. Key innovations include epitaxial growth of LED layers on sapphire or other substrates, micro-structuration of LED arrays (10μm pitches or smaller), and 3D heterogeneous integration of such LED arrays on CMOS active-matrices.

These innovations make it possible to produce a brightness of 1 million cd/m² for monochrome devices and 100 kcd/m² for full-color devices with a device size below one inch and 2.5 million pixels. This is a 100- to 1,000-times improvement compared to existing self-emissive microdisplays, with very good power efficiency. The technology also will allow fabrication of very compact products that significantly reduce system-integration constraints.

The high-density micro-LED array process was developed in collaboration with III-V Lab.

####

About CEA-Leti
As one of three advanced-research institutes within the CEA Technological Research Division, CEA-Leti serves as a bridge between basic research and production of micro- and nanotechnologies that improve the lives of people around the world. It is committed to creating innovation and transferring it to industry. Backed by its portfolio of 2,800 patents, Leti partners with large industrials, SMEs and startups to tailor advanced solutions that strengthen their competitive positions. It has launched 54 startups. Its 8,500m² of new-generation cleanroom space feature 200mm and 300mm wafer processing of micro and nano solutions for applications ranging from space to smart devices. With a staff of more than 1,800, Leti is based in Grenoble, France, and has offices in Silicon Valley, Calif., and Tokyo. Follow us on www.leti.fr and @CEA_Leti.



About III-V Lab (France)

III-V Lab is a private R&D organization jointly established by Alcatel-Lucent and Thales in 2004 under the French “Economic Interest Group” (GIE) status, rejoined by the CEA at the end of 2010. III-V Lab concentrates in a single entity the most advanced industrial research capabilities in the field of III-V semiconductors in Europe. III-V Lab offers pre-commercial and customized production of III-V components or epitaxy wafers (MBE, MOVPE) for leading edge innovative products. III-V Lab has strong competences and established track record in R&D from advanced modeling to transfer to production in the field of III-V SC (GaAs, InP, GaN …) and their integration on Si for applications such as: RF, communications, lasers and infrared detection. Visit us at www.3-5lab.fr

For more information, please click here

Contacts:
Agency
+33 6 74 93 23 47

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project