Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way

Abstract:
Creating entangled photons is part of the work quantum computing researchers perform in their labs. But for the past 30 years, scientists have been slowed down and frustrated by the large, often finicky machines they've had to use to generate them.

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way

Waterloo, Canada | Posted on February 16th, 2015

Now, a University of Waterloo researcher has invented a device - so small it fits into your hand - that can do the job. And far from being a fussy, difficult machine to operate, the Waterloo device can be tossed around the room - and still work.

A simpler, more efficient way to produce photons

Rolf Horn, a postdoctoral fellow at Waterloo's Institute for Quantum Computing (IQC), invented the device that will be brought to market soon so scientists around the world can use it in their labs. This new device advances quantum research by providing a simpler, more efficient way of producing entangled photons.

"This device is inspirational because it will accelerate quantum inventions and commercialization at IQC and around the world," says Raymond Laflamme, executive director at IQC and mentor to Horn. "We're at the beginning of an era, for IQC and society as a whole, as we start to see the germination of quantum innovations that are ripe for commercialization. We're very proud that all of the work to develop this device was done at IQC."

Waterloo device will save months of time

Thomas Jennewein, an associate professor at IQC who contributed his expertise on entangled photons to the development of the device, said there are hundreds of quantum research groups that could benefit from the invention. "Rolf's pre-aligned, robust, and significantly smaller device fixes a huge flaw in the process of producing entangled photons for quantum research, which will save months of time and work," says Jennewein.

The photons produced by the device are also extremely fragile which, in quantum terms, makes them very secure. If someone attempts to measure one photon, the pair of photons becomes uncorrelated and the user can tell there has been interference. This is a considerable improvement to current information security where keys used to protect data, such as passwords, are becoming easier to crack and users don't know their information is being looked at until it's too late.

Device could improve quantum information security

"Nothing is 100 per cent secure but this invention could improve security dramatically from anything that's available today," says Horn. "Pictures and other data could be encrypted with keys created by this quantum source. You would then be notified if someone tried to look at these keys, and you could stop sending sensitive information immediately."

Assisted by the Waterloo Commercialization Office (WatCo), Horn and his team received a Natural Sciences and Engineering Research Council of Canada (NSERC) Idea to Innovation Grant allowing the team to work with industry partners to build the hardware, optimize the device's system, and prepare the invention for commercialization.

####

For more information, please click here

Contacts:
200 University Avenue West
Waterloo, ON, Canada N2L 3G1
+1 519 888 4567

Copyright © University of Waterloo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New chip ramps up AI computing efficiency August 19th, 2022

How randomly moving electrons can improve cyber security May 27th, 2022

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project