Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists develop device for portable, ultra-precise clocks and quantum sensors

The attached image shows a microfabricated grating generating four new beams from a single incoming beam of light.

Credit: National Physical Laboratory
The attached image shows a microfabricated grating generating four new beams from a single incoming beam of light.

Credit: National Physical Laboratory

Abstract:
In a joint project between the Universities of Strathclyde and Glasgow, Imperial College London and the National Physical Laboratory, researchers have developed a portable way to produce ultracold atoms for quantum technology and quantum information processing.

Scientists develop device for portable, ultra-precise clocks and quantum sensors

Glasgow, UK | Posted on May 9th, 2013

Their research has been published in the journal Nature Nanotechnology, where it is featured on the front cover.

Many of the most accurate measurement devices, including atomic clocks, work by observing how atoms transfer between individual quantum states. The highest precision is obtained with long observation times, often using slow-moving ultracold atoms prepared in a large apparatus.

Dr Aidan Arnold, a Lecturer in Strathclyde's Department of Physics, said: "The longer the transition of atoms can be observed, the more precisely they can be measured. It is possible to shine laser light on atoms to slow them down using the Doppler effect. We can now do this in a really small device."

The researchers have developed technology which is far more compact than previous setups but can still cool and trap large numbers of atoms for use in portable devices. They pattern the surface of a semiconductor chip to form a diffraction grating, splitting a laser into many beams that cool the atoms.

Professor Ed Hinds, who directs the Centre for Cold Matter at Imperial College London, said: "These specially micro-fabricated diffraction gratings create the perfect laser beams for trapping and cooling atoms."

Portable clocks, magnetometers and accelerometers have wide-ranging applications, including navigation on earth and in space, telecomunications, geological exploration, and medical imaging.

Dr Alastair Sinclair, Principal Scientist at the National Physical Laboratory, said: "The miniaturisation of atomic sensors using these optical gratings can make an important contribution to metrology and high-precision measurement."

Professor Charlie Ironside of the School of Engineering at the University of Glasgow said: "The specialized optical diffraction gratings were co-designed by the groups in the collaboration and some of them were microfabricated in the James Watt Nanofabrication Centre at the University of Glasgow - the work is a good example of how a team of physicists and engineers can collaborate to produce cutting edge technology."

The project was funded by the Engineering and Physical Sciences Research Council, ESA, the EU AQUTE project, the Wellcome Trust, the UK National Measurement Office, the Royal Society of Edinburgh and the Royal Societ

####

For more information, please click here

Contacts:
Media and Corporate Communications

44-014-154-82370

Copyright © University of Strathclyde

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The full research paper can be seen at:

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Imaging

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Chip Technology

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Quantum Computing

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Tools

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Hitachi’s holography electron microscope attains unprecedented resolution:Image acquisition and defocusing correction techniques enable observations of atomic-scale magnetic fields at never-before-seen resolution July 5th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Quantum nanoscience

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

What is "time" for quantum particles? Publication by TU Darmstadt researchers in renowned journal "Science Advances" May 17th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project