Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCSB physicists make strides in understanding quantum entanglement

This is a kagome lattice.

Credit: N. Mori
This is a kagome lattice.

Credit: N. Mori

Abstract:
While some theoretical physicists make predictions about astrophysics and the behavior of stars and galaxies, others work in the realm of the very small, which includes quantum physics. Such is the case at UC Santa Barbara, where theoretical physicists at the Kavli Institute for Theoretical Physics (KITP) cover the range of questions in physics.

UCSB physicists make strides in understanding quantum entanglement

Santa Barbara, CA | Posted on December 15th, 2012

Recently, theoretical physicists at KITP have made important strides in studying a concept in quantum physics called quantum entanglement, in which electron spins are entangled with each other. Using computers to calculate the extreme version of quantum entanglement -- how the spin of every electron in certain electronic materials could be entangled with another electron's spin -- the research team found a way to predict this characteristic. Future applications of the research are expected to benefit fields such as information technology.

"Quantum entanglement is a strange and non-intuitive aspect of the quantum theory of matter, which has puzzled and intrigued physicists since the earliest days of the quantum theory," said Leon Balents, senior author of a recent paper on this topic published in the journal Nature Physics. Balents is a professor of physics and a permanent member of KITP.

Quantum entanglement represents the extent to which measurement of one part of a system affects the state of another; for example, measurement of one electron influences the state of another that may be far away, explained Balents. In recent years, scientists have realized that entanglement of electrons is present in varying degrees in solid materials. Taking this notion to the extreme is the "quantum spin liquid," a state of matter in which every electron spin is entangled with another.

Balents said that quantum spin liquids are being sought in experiments on natural and artificial minerals. A key question posed by physicists is how to calculate theoretically which materials are quantum spin liquids. "In our paper, we provide an answer to this question, showing that a precise quantitative measure of 'long-range' entanglement can be calculated for realistic models of electronic materials," said Balents.

"Our results provide a smoking gun signature of this special type of entanglement that determines whether or not a given material is a quantum spin liquid," explained Balents. The results prove that an emblematic example of this type of problem -- material with electron spins residing on the "kagome lattice" -- is indeed a quantum spin liquid, according to Balents. The kagome lattice is a pattern of electron spins named after a type of Japanese fishing basket that this arrangement of spins resembles.

"We expect the technique we developed to have broad applications in the search for these unique quantum states, which in the future may have remarkable applications in information technologies," said Balents.

Hong-Chen Jiang, postdoctoral fellow with KITP, and Zhenghan Wang, a researcher with Microsoft Station Q at UCSB, are co-authors of the paper.

####

For more information, please click here

Contacts:
Gail Gallessich

805-893-7220

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Quantum nanoscience

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project