Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Research on Nano mechanics gains ground in Düsseldorf (Germany)

Prof. Gerhard Dehm - MPIE
Prof. Gerhard Dehm - MPIE

Abstract:
Assignment of Prof Gerhard Dehm at the Max-Planck-Institut für Eisenforschung

The Max-Planck-Institut für Eisenforschung (Max Planck Institute for Iron Research; in the following: MPIE) has established a new department headed by Prof Gerhard Dehm. The department "Structure and Nano-/Micromechanics of Materials" aims at understanding the local mechanical properties of materials by employing mechanical testing and microstructural characterization methods with high spatial resolution. With this understanding, nanostructured materials and high temperature intermetallic materials with superior mechanical properties will be developed.

Research on Nano mechanics gains ground in Düsseldorf (Germany)

Düsseldorf, Germany | Posted on December 12th, 2012

The development of new materials with superior properties goes hand in glove with the analysis of atomic defect structures and their reciprocity. This enables Dehm to draw conclusions between the structure and the mechanical properties of the analysed materials. That is especially interesting at the micro and nano scale as materials can behave totally different compared to their bulk counterparts. The analysed dimensions are that small that defects in the materials correspond directly with the size of the sample. This phenomenon results in exceptional material properties that are not found analysing larger scales. Dehm and his team aim at transferring the results gained on the nano scale to the bulk materials. This is helpful in combining opposed properties like extreme hardness and high ductility for technical materials.

The MPIE will undergo huge reconstruction processes to enable this kind of research. New high-resolution transmission electron microscopes will help to carry out the experiments on the nano scale. A cornerstone will be the combination of advanced characterisation and mechanical testing in form of in situ nano-/micromechanical experiments which permit to simultaneously observe the microstructural changes while measuring the mechanical response.

Dehm's research is especially interesting for applications in the nano and microelectronics of automobiles, in power engineering and for flexible electronics. Additionally, the life span of high temperature materials and complex steels depends on the local properties. Thus, these materials are in the research focus, too. Moreover, the research methods used by Dehm permit to optimise the assembly of ceramics and polymers with metals. This is important for corrosion protection and the processing of surfaces.

Dehm did his doctorate 1995 in material sciences at the Max-Planck-Institute for Metals Research in Stuttgart (Germany). Before joining the University of Leoben (Austria) in 2005 as a professor for Materials Physics, he continued his research as a group leader in Stuttgart and had a research stay at the Technion in Haifa (Israel). In Leoben, Dehm was head of the Department of Materials Physics and director of the Erich Schmid Institute of Material Science of the Austrian Academy of Sciences.

####

About Max-Planck-Institut für Eisenforschung GmbH
At the Max-Planck Institute for Eisenforschung GmbH (MPIE), research is carried out on iron, steel and related materials, such as nickel, titanium and intermetallic phase alloys. An essential target of the investigations is an improved understanding of the complex physical processes and chemical reactions of these materials. In addition, new high-performance materials with outstanding physical and mechanical properties are developed for use as high-tech structural and functional components. In this way, basic research is amalgamated with innovative developments relevant to applications and process technology. The Max-Planck Institute for Iron Research GmbH is financed in equal proportions by the Max-Planck Society for the Advancement of Science and the Steel Institute VDEh.The Institute is organised in departments. The departments are divided into working groups with specific research activities. These are complementary and together contribute to achieving departmental targets. Apart from the research on which the individual departments concentrate, there are interdisciplinary fields of research in which concerted initiatives help achieve scientific and technological breakthroughs in significant and highly competitive areas. These include the development of new grades of steel with special material properties, the investigation of surface and interface area stability, research into the connection between microstructure and material properties, the development of new types of experimental methods for material characterisation and a new generation of computer-assisted simulation tools, which are based on quantum mechanics multiscale methods.

For more information, please click here

Contacts:
Yasmin Ahmed Salem

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Tools

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Appointments/Promotions/New hires/Resignations/Deaths

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone's Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021

The National Space Society Remembers Ben Bova : NSS Mourns the Loss of a Visionary NSS Leader December 2nd, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project