Home > Press > Therapeutic impact of cell transplantation aided by magnetic factor
Abstract:
Two studies in the current issue of Cell Transplantation (21:6), now freely available on-line at www.ingentaconnect.com/content/cog/ct/, demonstrate how the use of magnetic particles are a factor that can positively impact on the targeted delivery of transplanted stem cells and to also provide better cell retention.
A research team from the University of British Columbia used focused magnetic stem cell targeting to improve the delivery and transport of mensenchymal stem cells to the retinas of test rats while researchers from Cedars-Sinai Heart Institute (Los Angeles) injected magnetically enhanced cardiac stem cells to guide the cells to their target to increase cell retention and therapeutic benefit in rat models of ischemic/reperfusion injury.
According to study co-author Dr. Kevin Gregory-Evans, MD, PhD, of the Centre for Macular Degeneration at the University of British Columbia, degeneration of the retina - the cause of macular degeneration as well as other eye diseases - accounts for most cases of blindness in the developed world. To date, the transplantation of mensenchymal stem cells to the damaged retina has had "limited success" because the cells reaching the retina have been in "very low numbers and in random distribution."
Seeking to improve stem cell transplantation to the retina, the researchers magnetized rat mesenchymal stem cells (MSCs) using superparamagnetic iron oxide nanoparticles (SPIONs). Via an externally placed magnet, they directed the SPION enhanced cells to the peripheral retinas of the test animals.
"Our results showed that large numbers of blood-borne magnetic MSCs can be targeted to specific retinal locations and produce therapeutically useful biochemical changes in the target tissue," explained Gregory-Evans. "Such an approach would be optimal in focal tissue diseases of the outer retina, such as age-related macular degeneration."
Citation: Cheng, K.; Malliaras, K.; Li, T.-S.; Sun, B.; Houde, C.; Galang, G.; Smith, J.; Matsushita, N.; Marbán, E. Magnetic Enhancement of Cell Retention, Engraftment, and Functional Benefit After Intracoronary Delivery of Cardiac-Derived Stem Cells in a Rat Model of Ischemia/Reperfusion. Cell Transplant. 21(6):1121-1135; 2012.
The Coeditor-in-chief's for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at or Shinn-Zong Lin, MD, PhD at or David Eve, PhD at
News release by Florida Science Communications www.sciencescribe.net
####
For more information, please click here
Contacts:
David Eve
Dr. Eduardo Marban, MD, PhD
Cedars of Sinai Heart Institute
8700 Beverly Blvd., 1090 Davis Research Building
Los Angeles, CA 90048
Tel. 310-423-7557
Fax. 310- 423- 7637
Copyright © Cell Transplantation Center of Excellence for Aging and Brai
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Announcements
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |