Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Interfaces provide new control over oxides' electronic properties

Provided/Kyle Shen
An artist's rendering of a transition metal oxide superlattice, with an actual transmission electron microscopy image superimposed on the left panel. The red is manganese, yellow is lanthanum and blue is strontium. The top is a Fermi surface map which illustrates how electrons move in the material.
Provided/Kyle Shen

An artist's rendering of a transition metal oxide superlattice, with an actual transmission electron microscopy image superimposed on the left panel. The red is manganese, yellow is lanthanum and blue is strontium. The top is a Fermi surface map which illustrates how electrons move in the material.

Abstract:
Materials called transition metal oxides have physicists intrigued by their potentially useful properties -- from magnetoresistance (the reason a hard drive can write memory) to superconductivity.

Interfaces provide new control over oxides' electronic properties

Ithaca, NY | Posted on September 4th, 2012

By combining two sophisticated experimental tools -- oxide molecular beam expitaxy and angle-resolved photoemission spectroscopy -- researchers have gained the first insights into quantum interactions in transition metal oxide superlattices, which are artificial stacked layers of alternating materials, each just a few atoms thick.

Even slight modifications to the stacking sequence can switch the entire superlattice from a conductive to insulating state, due to the enhancement of quantum interactions between the electrons. The findings were published online Aug. 19 in the journal Nature Materials.

"We are interested in superlattices of transition metal oxides because they can exhibit all sorts of exotic electronic and magnetic properties that do not exist in the bulk of these materials," said Kyle Shen, assistant professor of physics and paper's senior author. "They might be useful someday, but from a scientific standpoint, they are just really fascinating because the electrons can conspire to give rise to very unexpected emergent phenomena."

For some transition metal oxide superlattices, it has been shown that adding just one extra layer of atoms to the stacked layers switches them from conductor to insulator. Shen and his colleagues wanted to understand why this occurs.

To do this, the team tapped the expertise of co-author Darrell Schlom, the Herbert Fisk Johnson Professor of Industrial Chemistry in the Department of Materials Science and Engineering, who with postdoctoral scholar Carolina Adamo, created specifically designed stacks of two oxides, lanthanum manganese oxide and strontium manganese oxide, each just a few atomic layers thick and with atomic precision. To make the superlattices, they used molecular beam epitaxy, which is like spray-painting with the elements of the periodic table.

The team then utilized a unique piece of instrumentation designed and built by Shen and Schlom's groups at Cornell. It allowed them to study the superlattices after synthesis by angle-resolved photoemission spectroscopy without exposing the surfaces to air, which would contaminate the sample and obscure the sensitive experiments. Eric Monkman, a graduate student in Shen's group, and colleagues then measured and analyzed how the electrons move through different kinds of superlattices.

It turned out that the distances between the interfaces of the lanthanum and strontium oxides were the key: Pushing the interfaces farther apart made the electrons more confined to each individual interface, resulting in an enhancement of the quantum interactions, which drive the entire superlattice into an insulating state.

By pushing the interfaces closer together, the electrons could start to move between interfaces, resulting in a metallic state. The researchers were able to reach these conclusions through the use of photoemission spectroscopy, which maps the motion of electrons in solids at the atomic scale.

Advanced transmission electron microscopy imaging led by David A. Muller, Cornell professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science, and graduate student Julia Mundy, confirmed that the interfaces between the lanthanum and strontium were indeed sharp, which helped confirm the quantum interactions.

The paper's co-first authors are Monkman and Adamo. Shen, Schlom and Muller are members of the Kavli Institute at Cornell for Nanoscale Science. The research was supported by the National Science Foundation through the Cornell Center for Materials Research and a Career award.

####

For more information, please click here

Contacts:
Media Contact:
Syl Kacapyr
(607) 255-7701


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project