Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Reverse Engineering of polymers using nanoscale IR spectroscopy via AFM-IR – a publication by authors from Kimberley Clark Corporation

Abstract:
A recent publication in Spectroscopy Europe by lead authors from Kimberly Clark Corporation showed the use of AFM based nanoscale IR Spectroscopy for reverse engineering of polymeric multilayer films. The Atomic Force Microscope (AFM) is a fairly common nanoscale characterization technique but its main drawback to date was its inability to provide chemical composition information from a sample. By combining the AFM with a tunable Infrared (IR) source, IR spectra with nanoscale spatial resolution can be collected. As film thicknesses in multilayer films continue to shrink, AFM-IR provides an important capability for sample analysis.

Reverse Engineering of polymers using nanoscale IR spectroscopy via AFM-IR – a publication by authors from Kimberley Clark Corporation

Santa Barbara, CA | Posted on July 25th, 2012

According to the lead author, Tom Eby of Kimberly Clark Corporation, "‘Reverse engineering based on IR is an important application in most industrial labs and the spatial resolution breakthrough of the AFM-IR technique now enables this for a wide range of materials with sub-micron features.''
The paper titled " Reverse engineering of polymeric multilayers using AFM-based nanoscale IR spectroscopy and thermal analysis " was published in the June issue of Spectroscopy Europe. The authors used a combination of AFM-IR and nanoscale thermal analysis to obtain both infrared spectra and transition temperatures of each layer in a cross-sectioned multilayer film. From the combination of the two measurement techniques they were able to identify the six layers which included composite thin films.

####

About Anasys Instruments
Anasys Instruments is dedicated to delivering innovative products that measure material properties for samples with spatially varying physical and chemical properties at the nanoscale. Anasys introduced the nano-TA in 2006 which pioneered the field of nanoscale thermal property measurement. In 2010, Anasys introduced the award-winning breakthrough nanoIR™ Platform which pioneered the field of nanoscale IR measurement. Now in 2012, Anasys is proud to introduce the breakthrough Lorentz Force Contact Resonance, which pioneers the field of wideband nanomechanical spectroscopy.

For more information, please click here

Contacts:
Anasys contact:
Roshan Shetty
Anasys Instruments Corporation
121 Gray Avenue, Suite 100
Santa Barbara
CA 93101 USA
Tel: +1 (805) 730-3310


Media contact:

Jezz Leckenby
Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA, UK
Tel: +44 (0) 1799 521881
Mob: +44 (0) 7843 012997
www.talking-science.com/

Copyright © Anasys Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download Paper - “ Reverse engineering of polymeric multilayers using AFM-based nanoscale IR spectroscopy and thermal analysis.”

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Imaging

Single atoms show their true color July 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Tools

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Hitachi’s holography electron microscope attains unprecedented resolution:Image acquisition and defocusing correction techniques enable observations of atomic-scale magnetic fields at never-before-seen resolution July 5th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project