Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > High-temperature superconductivity starts with nanoscale electronic oases

Provided/Davis group
Scanning tunneling microscope image of a partially doped cuprate superconductor shows regions with an electronic "pseudogap" (rounded rectangle) others with no progress from the original insulator (dashed circles). As doping increases, pseudogap regions spread and connect, making the whole sample a superconductor.
Provided/Davis group

Scanning tunneling microscope image of a partially doped cuprate superconductor shows regions with an electronic "pseudogap" (rounded rectangle) others with no progress from the original insulator (dashed circles). As doping increases, pseudogap regions spread and connect, making the whole sample a superconductor.

Abstract:
High-temperature superconductivity doesn't happen all it once. It starts in isolated nanoscale patches that gradually expand until they take over.

High-temperature superconductivity starts with nanoscale electronic oases

Ithaca, NY | Posted on May 30th, 2012

That discovery, from atomic-level observations at Cornell and the University of Tokyo, offers a new insight into the puzzling "pseudogap" state observed in high-temperature superconductors; it may be another step toward creating new materials that superconduct at temperatures high enough to revolutionize electrical engineering.

Using extremely precise scanning tunneling microscopes (STM) that can observe the states of electrons around atoms, an international research team led by J.C. Sťamus Davis, the J.G. White Distinguished Professor in the Physical Sciences, and by Hidenori Takagi, professor of physics at the University of Tokyo, has for the first time observed how a high-temperature superconductor evolves as its chemical composition is modified. They found that as more "dopant" atoms are added, small, scattered superconducting areas, some just a few atoms across, appear. These grow until they touch and eventually fill the entire space, whereupon the entire material becomes a superconductor.

"Some theorists have imagined that this is what happens," Davis said, "but there has been no evidence until now." The research was reported May 20 in the online edition of the journal Nature Physics.

Superconductivity, in which an electric current flows with zero resistance, was first discovered in metals cooled very close to absolute zero (-273 degrees Celsius). New materials called cuprates -- copper oxides "doped" with other atoms -- superconduct as "high" as -123 Celsius.

Observations of high-temperature superconductors with the STM and other instruments show an "energy gap" where electronic states are missing. Theory says that electrons have left to join into "Cooper pairs" that can carry an electric current without interference. A puzzler for physicists is that sometimes this energy gap appears but the material still does not superconduct -- a so-called "pseudogap" phase. The pseudogap appears at higher temperatures than any superconductivity, offering the promise of someday developing materials that would superconduct at or near room temperature.

The researchers use STMs to scan a surface in steps smaller than an atom, measuring what electron energy levels are occupied and what electrons are conspicuous by their absence. They examined a series of samples of a material known as sodium-doped calcium cuprate, prepared with gradually increasing sodium content. As more sodium is added to the mix it displaces calcium atoms, changing the crystal structure and the arrangement of electrons in ways not completely understood. This particular cuprate was chosen because its simple chemistry allows fine tuning, Davis said. The phenomena observed had not been seen before because most cuprates make abrupt transitions from insulator to pseudogap to superconductor, he explained.

At a moderate level of doping, the STM finds small, scattered areas with the pseudogap signature. These areas also show a "broken symmetry" where the arrangement of electrons between copper and oxygen atoms differs between "north and south" and "east and west" in the square crystal lattice. Davis and colleagues had found this broken symmetry in earlier observations of the same superconductors.

As doping increases, these areas become larger until finally they touch, and the entire sample becomes a superconductor. It's presumed that the scattered pseudogap regions occur in the vicinity of dopant atoms, but those atoms were not observed in the current study, Davis said.

Previously, the researchers noted, it was thought that the pseudogap phase in cuprates might be in competition with superconductivity, something that had to be gotten out of the way before superconductivity could happen. This work, they said, suggests that it is beneficial -- a necessary step in the evolution of a superconductor.

The research was supported by the U.S. Department of Energy and the Japan Society for the Promotion of Science.

####

For more information, please click here

Contacts:
Media Contact:
John Carberry
(607) 255-5353

Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Physics

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Superconductivity

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NRL charters Navyís quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchersí approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project