Home > Press > Iranian Researchers Find Novel Method for Fabrication of Gas Nanosensors
Abstract:
Researchers at Iran's Materials and Energy Research Center (MERC) in collaboration with their colleagues at the University of Barcelona have recently managed to fabricate new sensors which feature better properties compared to their rivals in terms of response time and sensitivity.
Reproducibility, high efficiency and low cost and time of production are among other relative advantages of this new method.
Esmayeelzadeh, one of the members of the research group, explained, "Our work consisted of three major stages: characterization of the nanopowder used as the sensing material, layer deposition, and testing the performance of the sensor for detection of the pollutant gas nitrogen dioxide at various temperatures and concentrations. The layer deposition employed in this work was based on a low frequency alternating current. To our knowledge, such a method is novel and introduced for the first time by our research group."
In the proposed sensors, titanium oxide molecules are deposited on a layer of aluminum by a low-strength alternating field electrophoresis for practical detection of nitrogen dioxide. A set of experiments at dilute concentrations and varying temperatures (450-550 C) was conducted to conclude the desirable sensitivity of the fabricated nitrogen oxide gas sensors.
"The adopted method enables the control for configuration of the used nanoparticles, as the sensing elements, within the sensing layer. This would allow an optimal layer deposition and in turn performance. As a result, the current nanosensors can well compete with the conventional sensors available in the today market," Esmayeelzadeh added.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |