Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Iranian Researchers Find Novel Method for Fabrication of Gas Nanosensors

Abstract:
Researchers at Iran's Materials and Energy Research Center (MERC) in collaboration with their colleagues at the University of Barcelona have recently managed to fabricate new sensors which feature better properties compared to their rivals in terms of response time and sensitivity.

Iranian Researchers Find Novel Method for Fabrication of Gas Nanosensors

Tehran, Iran | Posted on April 16th, 2012

Reproducibility, high efficiency and low cost and time of production are among other relative advantages of this new method.

Esmayeelzadeh, one of the members of the research group, explained, "Our work consisted of three major stages: characterization of the nanopowder used as the sensing material, layer deposition, and testing the performance of the sensor for detection of the pollutant gas nitrogen dioxide at various temperatures and concentrations. The layer deposition employed in this work was based on a low frequency alternating current. To our knowledge, such a method is novel and introduced for the first time by our research group."

In the proposed sensors, titanium oxide molecules are deposited on a layer of aluminum by a low-strength alternating field electrophoresis for practical detection of nitrogen dioxide. A set of experiments at dilute concentrations and varying temperatures (450-550 C) was conducted to conclude the desirable sensitivity of the fabricated nitrogen oxide gas sensors.

"The adopted method enables the control for configuration of the used nanoparticles, as the sensing elements, within the sensing layer. This would allow an optimal layer deposition and in turn performance. As a result, the current nanosensors can well compete with the conventional sensors available in the today market," Esmayeelzadeh added.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project