Home > Press > Bright Lights of Purity: Berkeley Lab Researchers Discover Why Pure Quantum Dots and Nanorods Shine Brighter
Luminescence of CdSe/CuS nanocrystals prepared by cation-exchange. On the left are crystals prior to purification, on the right are the same nanocrystals after impurities have been removed. |
Abstract:
To the lengthy list of serendipitous discoveries - gravity, penicillin, the New World - add this: Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered why a promising technique for making quantum dots and nanorods has so far been a disappointment. Better still, they've also discovered how to correct the problem.
A team of researchers led by chemist Paul Alivisatos, director of Berkeley Lab, and Prashant Jain, a chemist now with the University of Illinois, has discovered why nanocrystals made from multiple components in solution via the exchange of cations (positive ions) have been poor light emitters. The problem, they found, stems from impurities in the final product. The team also demonstrated that these impurities can be removed through heat.
"By heating these nanocrystals to 100 degrees Celsius, we were able to remove the impurities and increase their luminescence by 400-fold within 30 hours," says Jain, a member of Alivisatos' research group when this work was done. "When the impurities were removed the optoelectronic properties of nanocrystals made through cation-exchange were comparable in quality to dots and nanorods conventionally synthesized."
Says Alivisatos, "With our new findings, the cation-exchange technique really becomes a method that can be widely used to make novel high optoelectronic grade nanocrystals."
Jain is the lead author and Alivisatos the corresponding author of a paper describing this work in the journal Angewandte Chemie titled "Highly Luminescent Nanocrystals From Removal of Impurity Atoms Residual From Ion Exchange Synthesis." Other authors were Brandon Beberwyck, Lam-Kiu Fong and Mark Polking.
Quantum dots and nanorods are light-emitting semiconductor nanocrystals that have a broad range of applications, including bio-imaging, solar energy and display screen technologies. Typically, these nanocrystals are synthesized from colloids - particles suspended in solution. As an alternative, Alivisatos and his research group developed a new solution-based synthesis technique in which nanocrystals are chemically transformed by exchanging or replacing all of the cations in the crystal lattice with another type of cation. This cation-exchange technique makes it possible to produce new types of core/shell nanocrystals that are inaccessible through conventional synthesis. Core/shell nanocrystals are heterostructures in which one type of semiconductor is enclosed within another, for example, a cadmium selenide (CdSe) core and a cadmium sulfide (CdS) shell.
"While holding promise for the simple and inexpensive fabrication of multicomponent nanocrystals, the cation-exchange technique has yielded quantum dots and nanorods that perform poorly in optical and electronic devices," says Alivisatos, a world authority on nanocrystal synthesis who holds a joint appointment with the University of California (UC) Berkeley, where he is the Larry and Diane Bock professor of Nanotechnology.
As Jain tells the story, he was in the process of disposing of CdSe/CdS nanocrystals in solution that were six months old when out of habit he tested the nanocrystals under ultraviolet light. To his surprise he observed significant luminescence. Subsequent spectral measurements and comparing the new data to the old showed that the luminescence of the nanocrystals had increased by at least sevenfold.
"It was an accidental finding and very exciting," Jain says, "but since no one wants to wait six months for their samples to become high quality I decided to heat the nanocrystals to speed up whatever process was causing their luminescence to increase."
Jain and the team suspected and subsequent study confirmed that impurities - original cations that end up being left behind in the crystal lattice during the exchange process - were the culprit.
"Even a few cation impurities in a nanocrystal are enough to be effective at trapping useful, energetic charge-carriers," Jain says. "In most quantum dots or nanorods, charge-carriers are delocalized over the entire nanocrystal, making it easy for them to find impurities, no matter how few there might be, within the nanocrystal. By heating the solution to remove these impurities and shut off this impurity-mediated trapping, we give the charge-carriers enough time to radiatively combine and thereby boost luminescence."
Since charge-carriers are also instrumental in electronic transport, photovoltaic performance, and photocatalytic processes, Jain says that shutting off impurity-mediated trapping should also boost these optoelectronic properties in nanocrystals synthesized via the cation-exchange technique.
This research was supported by the DOE Office of Science.
####
About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.
For more information, please click here
Contacts:
Lynn Yarris
(510) 486-5375
Copyright © Berkeley Lab
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
For more information about the research of Paul Alivisatos, visit the Website at:
For more information about the research of Prashant Jain, visit the Website at:
Related News Press |
News and information
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Announcements
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||