Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotools Designed for Surgical Recovery: Recent work published by Professor David Smith’s research group has reported new nano-systems which may eventually help patients recovering from surgery

Abstract:
There is no doubt that the skill of surgeons plays a remarkable role in transforming the lives of hospital patients - from seriously injured victims of road traffic accidents to the recipients of heart and lung transplants. However, without the use of a range of different chemical drugs, surgeons would not be able to operate. One important drug is heparin, which thins the blood and allows surgeons to operate without clotting taking place. However, once surgery is finished, it is essential to remove the heparin and allow clotting to occur so the patient can recover. This is currently done by giving the patient a second drug, protamine. However, because protamine is a natural product arising from shellfish, some patients exhibit serious allergic responses.

Nanotools Designed for Surgical Recovery: Recent work published by Professor David Smith’s research group has reported new nano-systems which may eventually help patients recovering from surgery

Heslington, UK | Posted on April 26th, 2011

In their recent work, published in Angewandte Chemie, the Smith group have developed synthetic molecules which are capable of binding heparin. These molecules are designed to self-assemble into nanometre-sized structures with similar dimensions to protamine and containing multiple heparin binding units. It was shown that these nanosystems could bind to heparin just as effectively as protamine. ‘Clearly there is lots of fundamental work still to be done before clinical application,' says Smith, ‘but we hope that this approach may eventually yield biocompatible and degradable heparin binders, which will help surgical recovery without any of the side effects which can be caused by protamine'.

####

For more information, please click here

Contacts:
Department of Chemistry
University of York, Heslington, York, YO10 5DD, UK
Tel: work 44 01904 322511
Fax: fax 44 01904 322516

Copyright © University of York

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project