Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Thermoelectrics go nano

Half-Heuslers would be important thermoelectric materials due to their high temperature stability and abundance if their dimensionless thermoelectric figure of merit (ZT) could be made high enough. Credit 2010 American Chemical Society.
Half-Heuslers would be important thermoelectric materials due to their high temperature stability and abundance if their dimensionless thermoelectric figure of merit (ZT) could be made high enough. Credit 2010 American Chemical Society.

Abstract:
Recently, researchers from Boston College and MIT used nanotechnology to achieve a dramatic improvement in the thermoelectric performance of p-type half-Heuslers.

Thermoelectrics go nano

Chestnut Hill, MA | Posted on January 19th, 2011

Combined with the high temperature stability and abundance of this material, their work could make half-Heuslers good candidates for waste heat recovery in automotive exhaust systems, in which the waste heat of the exhaust is transformed back into electricity by thermoelectric modules, thus improving mileage.

Xiao Yan and his co-workers from BC and MIT achieved a 60-90% higher thermoelectric figure of merit (ZT - see 1 below) in nanostructured bulk samples in comparison with state-of-the-art ingot; specifically, peak ZT enhancements from 0.5 to 0.8 at 700 oC. The improvement mainly comes from the lower thermal conductivity and partially from the higher Seebeck coefficient. "It is the best scenario for a thermoelectric material. Think about it: you are enhancing the electronic transport properties while simultaneously hindering the passage of heat flow," said MIT professor Gang Chen.

A low-cost method was employed by Xiao Yan and his colleagues from BC and MIT, first forming bulk alloyed ingots by arc melting and then milling the material into a fine powder and finally hot-pressing the powder into nanocrystalline ingots. The average grain size of 100-200 nm is the smallest obtained in half-Heusler system to date. "This method is low cost and can be scaled for mass production. This represents an exciting opportunity to improve the thermoelectric performance of materials in a cost-effective manner," said Boston College professor Zhifeng Ren.

This work was published in Nano Letters pubs.acs.org/doi/abs/10.1021/nl104138t

Also contributing to the work were Prof. S. J. Poon from University of Virginia and Prof. T. M. Tritt from Clemson University.

(1) ZT is a measure of the thermoelectric performance of a material.

####

Contacts:
Ed Hayward
Boston College Office of Public Affairs
617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Automotive/Transportation

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project