Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCSD engineers give solar power a boost

UC San Diego environmental engineering professor Jan Kleissl is developing technologies and methods that allow homeowners, photovoltaic installers and utilities to better predict how much power they will get out of their solar systems. Credit: UC San Diego
UC San Diego environmental engineering professor Jan Kleissl is developing technologies and methods that allow homeowners, photovoltaic installers and utilities to better predict how much power they will get out of their solar systems. Credit: UC San Diego

Abstract:
The growing popularity of solar photovoltaic (PV) systems across the United States has made it more important to maximize their power input. That's why UC San Diego environmental engineering professor Jan Kleissl is working on technologies and methods that will better predict how much power we can actually harness from the sun.

UCSD engineers give solar power a boost

San Diego, CA | Posted on January 12th, 2011

In a paper recently published in the journal Renewable Energy (*), "Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States," Kleissl and his Ph.D. student Matt Lave explain why it's important to strategize on solar installation, depending upon the location of the building relative to the sun. For example, Kleissl and his students at the UC San Diego Jacobs School of Engineering have improved the solar map (solar.ucsd.edu/) for the state of California, which allows homeowners, photovoltaic installers and utilities to better predict how much energy they will get out of their solar systems. The map can be viewed via Google Earth for free.

"Probably the most important result of this work for California is that in all coastal areas (Los Angeles, San Francisco, San Diego) it is advantageous to install the panels facing about 10-degrees west of south," Kleissl said. "This not only optimizes energy production, but it also improves the correlation of solar power production with the load. Panels facing southwest 'see' the sun longer and at a better angle than panels facing south, which means that the energy generated is larger during the peak demand hours (3-to-5p.m.), making the energy more valuable. The generally clear conditions during the annual load peaks (also known as Santa Anas to Southern Californians) mean that the solar panels produce at the optimum power. On the other hand, wholesale energy prices during the peak time may be 10 times those during other days. In a future with more variable electricity rates this margin may tip the balance of economics in favor of solar energy and there will be greater incentives for installing panels facing southwest. Our maps show that there are already benefits of doing so now as the energy generation increases."

(*) www.sciencedirect.com/science/journal/09601481

Kleissl further explains his intensive solar research at UC San Diego in this recent video produced by SPIE the international society for optics and photonics:

mfile.akamai.com/65904/mov/spiestorage.download.akamai.com/65904/SPIEtv/JanKleissl.mov

####

For more information, please click here

Contacts:
Andrea Siedsma

858-822-0899

Copyright © University of California - San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project