Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Protein From Poplar Trees Can be Used to Greatly Reduce Size of Memory Elements and Increase the Density of Computer Memory

Prof. Danny Porath - novel memory and logic device
Prof. Danny Porath - novel memory and logic device

Abstract:
Hebrew U. Scientists Demonstrate Novel Memory and Logic Device

Protein From Poplar Trees Can be Used to Greatly Reduce Size of Memory Elements and Increase the Density of Computer Memory

Jerusalem | Posted on July 22nd, 2010

Scientists from the Hebrew University of Jerusalem have succeeded in showing how it is possible to greatly expand the memory capacity of future computers through the use of memory units based on silica nanoparticles combined with protein molecules obtained from the poplar tree.

In doing so, they say, they have developed an alternative avenue to miniaturize memory elements while increasing the number and capacity of memory and functional logic elements in computers. This approach, they say, could replace standard fabrication techniques in use until now for increasing computer memory capacity, a process which involves ever-increasing manufacturing costs.

The Hebrew University project involves the genetic engineering of poplar protein to enable its hybridization with a silicon nanoparticle. In this process, the nanoparticles are attached to the inner pore of a stable, ring-like protein (the poplar derivative), and these hybrids are arranged in a large network, or array, of very close, molecular memory elements.

Prof. Danny Porath and his graduate student Izhar Medalsy of the Institute of Chemistry at the Hebrew University have succeeded in successfully demonstrating how stable computing activity in a tiny memory element can be carried out in this way. The practical result is a cost-effective system that greatly increases existing memory capacity while significantly reducing the space required to carry out this volume of activity.

The genetically engineered poplar-derived protein complexes were developed in the laboratory of Prof. Oded Shoseyhov in the framework of the doctoral thesis of Dr. Arnon Heyman at the Robert H. Smith Faculty of Agriculture, Food and Environment of the Hebrew University.

An article describing the work of the scientists has been published in the journal Nature Nanotechnology.

The researchers are hopeful that this technology, which has been patented by Yissum, the technology transfer company of the Hebrew University, and licensed to Fulcrum SP Ltd., will prove to be a commercially successful alternative to current computer systems.

####

For more information, please click here

Copyright © Hebrew University of Jerusalem

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project