Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Less is more! Nanopatch is 100 times better than needle and syringe

Professor Kendall
Professor Kendall

Abstract:
New research, led by Professor Mark Kendall, from UQ's Australian Institute for Bioengineering and Nanotechnology, demonstrates that a vaccine delivered by a Nanopatch induces a similarly protective immune response as a vaccine delivered by needle and syringe, but uses 100 times less vaccine.

Less is more! Nanopatch is 100 times better than needle and syringe

Brisbane, Australia | Posted on April 22nd, 2010

This discovery has implications for many vaccination programs in both industrialised and developing nations, which must overcome issues with vaccine shortages and distribution.

Being both painless and needle-free, the nanopatch offers hope for those with needle phobia, as well as improving the vaccination experience for young children.

"The Nanopatch targeted specific antigen-presenting cells found in a narrow layer just beneath the skin surface and as a result we used less than one hundredth of the dose used by a needle while stimulating a comparable immune response," Professor Kendall said.

"Our result is ten times better than the best results achieved by other delivery methods and does not require the use of other immune stimulants, called adjuvants, or multiple vaccinations.

"Because the Nanopatch requires neither a trained practitioner to administer it nor refrigeration, it has enormous potential cheaply deliver vaccines in developing nations," he said.

Professor Kendall said the Nanopatch� was much smaller than a postage stamp and comprised of several thousands of densely packed projections invisible to the human eye.

The influenza vaccine was dry coated onto these projections and applied to the skin of mice for two minutes. "By using far less vaccine we believe that the Nanopatch will enable the vaccination of many more people," Professor Kendall said.

"When compared to a needle and syringe a nanopatch is cheap to produce and it is easy to imagine a situation in which a government might provide vaccinations for a pandemic such as swine flu to be collected from a chemist or sent in the mail.

"This is an exciting discovery and our next step is to prove the effectiveness of Nanopatches in human clinical trials," he said.

Professor Kendall's team includes researchers from UQ's Diamantina Institute for Cancer, Immunology and Metabolic Medicine and Faculty of Health Sciences, as well as the University of Melbourne.

The work was supported by the Australian Research Council, the National Health and Medical Research Council, and the Queensland Government's Smart State Scheme.

AIBN is a multidisciplinary research institute focused on addressing some of the intricate problems in the areas of health, energy and the environment.

####

For more information, please click here

Contacts:
Media:
Professor Mark Kendall
07 3346 4203 or 0431 162 391

Copyright © University of Queensland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project