Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanorobot bacteria analyzer model and animation

Abstract:
Nanobotmodels Company has made a model and an animation of a simple nanorobot which instantly indicates the presence of bacteria in the bloodstream. This is the future of medicine - instant diagnosis and fast treatment using nanotechnology nanomachines.

Nanorobot bacteria analyzer model and animation

Ukraine | Posted on February 27th, 2010

Bacteremia is most commonly diagnosed by blood culture, in which a sample of blood is allowed to incubate with a medium that promotes bacterial growth. Since blood is normally sterile, this process does not normally lead to the isolation of bacteria. If, however, bacteria are present in the bloodstream at the time the sample is obtained, the bacteria will multiply and can thereby be detected. Any bacteria that incidentally find their way to the culture medium will also multiply. For this reason, blood cultures must be drawn with great attention to sterile process.

That's why a barcode nanorobot will be useful - it can instantly show which bacteria are now in patient's bloodstream.

Barcode nanorobots will have bacterial binding sites connected by a semiconductor lattice. Once bacteria is trapped on a nanobot's surface, lattice resistance will change and the nanobot's CPU will decide from calculated tables which type of bacteria is on the surface.

This information will be instantly transmitted to the mechanical barcode display. After all blood sample with small amount of nanobots the doctor can examine under the microscope. Using a laser barcode scanner, all information about bacteria type and concentration will be available.

Nanobot's dimensions are near 5-6 microns, so it will be able travel across the tiniest human capillaries. Machine-powered by tiny electro cells, which can be charged remotely by the electric field.

You can see animation and brief article about barcode nanobot here: www.nanobotmodels.com/node/37

Only animation you can see on YouTube: www.youtube.com/watch?v=L4BteH8lkhs&feature=player_embedded

You can see more screenshots from animation in our image gallery: www.nanobotmodels.com/image/tid

####

About Nanobotmodels
Nanobotmodels Company (www.nanobotmodels.com) was founded in 2007 and it goal is develop modern art-science-technology intersections.

Nanotechnology boost medicine, engineering, biotechnology, electronics soon, so artwork and vision of the nanofuture will be very useful.

Our team consists of modern artists, modelers and nanotechnology scientists.

For more information, please click here

Contacts:
Svidinenko Yuriy, CEO
Nanobotmodels Company

+38 (096) 470 41 66

Copyright © Nanobotmodels

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project