Home > News > Nanopillars Boost Solar Efficiency
February 17th, 2010
Nanopillars Boost Solar Efficiency
Abstract:
Thin-film solar cells are less expensive than traditional photovoltaics sliced from wafers, but they're not as efficient at converting the energy in sunlight into electricity. Now a Newton, MA-based startup is developing a nanostructured design that overcomes one of the main constraints on the performance of thin-film solar cells. Solasta fabricates on arrays of nanopillars, rather than flat areas, boosting the efficiency of amorphous silicon solar cells to about 10 percent--still less than crystalline silicon panels, but more than the thin-film amorphous silicon panels on the market today. The company says that the design won't require new equipment or materials and that it will license its technology to amorphous-silicon manufacturers at the end of this year.
Source:
technologyreview.com
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Solar/Photovoltaic
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||