Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > All Decked Out

Abstract:
Networks of chitin filaments are integral components of diatom silica shells

All Decked Out

Posted on December 1st, 2009

A whole microcosm of various bizarrely shaped life forms opens up when you look at diatoms, the primary component of ocean plankton, under a microscope. The regularly structured silica shells of these tiny individual life forms have attracted scientists because they are particularly interesting examples of natural hybrid materials and also demonstrate unusual mechanistic and optical properties. The mechanisms of the underlying biomineralization process are not yet fully understood, but the silica shells often provide inspiration for the synthesis of man-made nanostructures. Researchers at TU Dresden and the Max Planck Institute the Chemical Physics of Solids in Dresden have now identified another component of the diatom cell walls. As the team led by Eike Brunner reports in the journal Angewandte Chemie, they found an organic network of crosslinked chitin filaments.

Chitin is a long molecular chain of sugar building blocks, a polysaccharide. It is the second most widespread polysaccharide on Earth after cellulose. In combination with calcium carbonate (lime) and proteins, it forms the shells of insects and crabs. "Chitin plays an important role in the biomineralization of such calcium carbonate based shells and structures," explains Brunner. "We have now been the first to demonstrate that the silica cell walls of the diatom Thalassiosira pseudonana also contain a chitin-based network."

The researchers dissolved the silica components of diatom shells with a fluoride-containing solution. What remained behind appears under a scanning electron microscope as a delicate, net-like scaffolding. This network resembles the cell wall in form and size and consists of crosslinked fibers with an average diameter of about 25 nm. Spectroscopic examinations show that the fibers contain chitin and other, previously unknown biomolecules.

"Our results suggest that the chitin-based network structure serves as a supporting scaffold for silica deposition, while the other biomolecules actively influence it," states Brunner. "This mechanism is thus analogous to calcium carbonate biomineralization. In addition, these networks may also mechanically stabilize the cell walls."

Author: Eike Brunner, TU Dresden (Germany), analyt.chm.tu-dresden.de/

Title: Chitin-Based Organic Networks—An Integral Part of Cell Wall Biosilica in the Diatom Thalassiosira pseudonana

Angewandte Chemie International Edition, doi: 10.1002/anie.200905028

####

For more information, please click here

Contacts:
Editorial office:


Amy Molnar (US)


Jennifer Beal (UK)


Alina Boey (Asia)

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Physics

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project