Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticle breakthrough could improve solar cells

Precision-crafted nanoparticles could
enable photovoltaic cells to harness a
much bigger chunk of the sun’s energy.
Precision-crafted nanoparticles could enable photovoltaic cells to harness a much bigger chunk of the sun’s energy.

Abstract:
The sun may soon power many more homes and appliances, thanks to chemists at Idaho National Laboratory and Idaho State University. They have invented a way to manufacture highly precise, uniform nanoparticles to order. The technology, which won an R&D 100 Award this year, has the potential to vastly improve photovoltaic cells and further spur the growing nanotech revolution.

Nanoparticle breakthrough could improve solar cells

Idaho Falls, ID | Posted on October 29th, 2009

INL chemist Bob Fox and his ISU colleagues were looking for a better way to make semiconducting nanoparticles for solar cells. When the researchers introduced "supercritical" carbon dioxide — CO2 that behaves like both a gas and a liquid — to their reactions, they generated high-quality nanoparticles at low, energy-saving temperatures. And, surprisingly, the nanoparticles were incredibly uniform.

With subsequent tweaking, the team figured out how to make nanoparticles of prescribed sizes — anywhere from 1 to 100 nanometers — with unprecedented precision. Because the properties of nanoparticles are so strongly size-dependent, the implications of this breakthrough are vast.

The new methodology could lead to more efficient solar cells, for example. Photovoltaic cells generate electricity when incoming photons knock electrons loose from atoms of a semiconducting material. The energy required to free these electrons — called the band gap — is specific to each material and corresponds to a mere sliver of the sun's radiation spectrum. Lower-energy photons do nothing, and the extra punch of higher-energy photons is wasted as heat. This fact explains why the efficiency of most current cells maxes out around 20 percent.

But more of the sun's energy could be captured if semiconductor building blocks could be tuned to several specific wavelengths of light. The band gap of semiconducting nanoparticles changes greatly with size, so precise control of nanoparticle dimensions may make it possible to manufacture such building blocks from a single material. A photovoltaic cell made of such components could capture huge swathes of the solar energy spectrum.

Other, similar applications should soon appear on the horizon for the technology, which has been licensed by Precision Nanoparticles, Inc., of Seattle.

"The only thing limiting us at this point is our imagination," Fox says.

####

About Idaho National Laboratory
In operation since 1949, INL is a science-based, applied engineering national laboratory dedicated to supporting the U.S. Department of Energy's missions in nuclear and energy research, science, and national defense.

For more information, please click here

Contacts:
Idaho National Laboratory
2025 Fremont Avenue
Idaho Falls, ID 83415
866-495-7440

Copyright © Idaho National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Possible Futures

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project