Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers discover recipe for controlling carbon nanotubes

Carbon nanotubes are cylindrical carbon molecules whose novel properties make them useful for applications in chemical engineering, nanotechnology, electronics and other areas.
Carbon nanotubes are cylindrical carbon molecules whose novel properties make them useful for applications in chemical engineering, nanotechnology, electronics and other areas.

Abstract:
Carbon nanotubes hold promise for delivering medicine directly to a tumor; acting as sensors so keen they detect the arrival or departure of a single electron; replacing costly platinum in fuel cells; or as energy-saving transistors and wires, but building them with the right structure has been a challenge.

Researchers discover recipe for controlling carbon nanotubes

Cleveland, OH | Posted on October 14th, 2009

Now, two Case Western Reserve University researchers have found that mixing different metals in a catalyst can help determine the tubes' structure and function, or chirality.

"We have established a link between the structure of a catalyst and the chirality of carbon nanotubes," said R. Mohan Sankaran, an assistant professor of chemical engineering at the Case School of Engineering. "Change the catalyst structure by varying its composition, and you can begin to control the chirality of the nanotubes and their electrical and optical properties."

Nanotubes are normally grown in bulk mixtures. When using a nickel catalyst, typically one-third of those grown are metallic and could be used like metal wires to conduct electricity. About two-thirds are semiconducting nanotubes, which could be used as transistors, said Wei-Hung Chiang, who received his doctorate in chemical engineering in May. But separating them according to properties is "costly and can damage the nanotubes," Chiang said.

Better to make what you want.

Chiang and Sankaran found that a mixed iron and nickel catalyst could change the outcome. Of the compositions tested, a catalyst of 27 percent nickel and 73 percent iron produced the most dramatic result: the majority of the nanotubes were semiconducting. The researchers are now working on assessing the purity and integrating the nanotubes into thin film transistors.

Chiang and Sankaran say their findings open the door to experimenting with other elements as catalysts and different combinations, which may produce near-pure nanotubes with desired properties. Their findings appear in a letter published Sept. 20 in the online edition of Nature Materials.

####

For more information, please click here

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project