Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How Things Work: Nanoparticle-based memory

Abstract:
Zacharias George: Modern hard disk drives last a few years before they have to be discarded they are plagued by mechanical failures that can occur anywhere between two and six years into their lives. Solid state drives offer some consolation in that the amount of time they can store data is approximately 2400 years if handled carefully, according to a paper published by Imation Corp. However, for those among us who would need to store data for over a billion years, we would probably have to resort to nanoparticle-based non-volatile memory.

How Things Work: Nanoparticle-based memory

Pittsburgh, PA | Posted on September 21st, 2009

Of the many nanomaterials, carbon nanotubes have attracted the most attention, and not without cause. Carbon nanotubes are tubes made of interconnected carbon atoms.

They may be single-walled, made of a single layer of carbon atoms, or they could be multi-walled, with multiple layers forming the tube. These nanotubes possess many properties that set them apart from most materials on the nano, micro, and macro scales.

Carbon nanotubes are the strongest and stiffest materials known today, and certain forms of these nanotubes are capable of conducting electricity. It is mainly on account of these two properties that carbon nanotubes are used in nanoparticle-based memory.

Digital data is stored and processed in binary digits, known as bits. These bits can be thought of as the states of a switch; they can be "on" or "off." In nanoparticle-based memory, the basic idea is to shuttle a nanoparticle (made of a metal like silver or iron) between the two ends of a multi-walled carbon nanotube. Usually, one end of the tube is considered to be at a certain logic level zero while the other end is the logic level one. The position of the shuttle within the nanotube, therefore, simulates the same states of "on" and "off," and if the shuttle position can be frozen, the system will function as non-volatile memory. Non-volatile memory is capable of storing data even when the power supply is removed.

"Writing" data into this sort of memory is to simply position the shuttle in one of the different predefined regions. Particle motion within the nanotube is brought about by flowing a current through the device. The direction of motion can be reversed by reversing the direction of supplied current. The speed of the particle as it travels along the tube is determined by the magnitude of the voltage applied across the ends of the tube. It follows that by reducing the supplied current to zero, the position of the shuttle can be fixed at some point within the tube.

The solid state physics group at the University of California at Berkeley, led by Alex Zettl, noticed that the electrical resistance offered by the nanotubes varies with the position of the particle, making it possible to locate the particle with reasonable accuracy by simply measuring the resistance along the tube. This is how the written data is then "read."

The nanotubes are sealed at both ends with electrodes, and these electrodes provide the shuttle with the current necessary for shuttle motion or positioning. At the nano scale, friction is negligible and the friction offered by the nanotube to the shuttle will be so trivial that no mechanical damage will be caused during particle movement.

Unlike hard disk drives, the mechanical components in this memory will not, in theory, fail. Furthermore, this lack of friction allows for an unlimited number of write/rewrite processes, unlike solid state drives that become unreliable after a certain number of write processes. Zettl's group has shown that data can be stored for longer than a billion years using this method of storage.

The nanotubes are protected, as they are hermetically sealed by the two electrodes, and this prevents contamination and possible loss of data. They also claim that compared to modern data storage systems, more data can be stored per area of storage material used.

While today's state-of-the-art hard disk drives can store approximately 200 gigabits (200 billion bits) per square inch, it is believed that this proposed method can increase data densities to around 1000 gigabits per square inch. So far, only small numbers of such carbon nanotubes have been assembled in order to test these data storage capabilities. These numbers have not been large enough to warrant mass production.

However, they do prove that this model works, and can be implemented with good results. It could well be quite a few years before this goes into production, quite possibly more than a decade before this system is perfected. Until then, we will have to wait, and while doing so, back up our digital data on solid state drives.

####

About Carnegie Mellon
The Tartan has been Carnegie Mellon University's student-run newspaper since 1906. With a weekly broadsheet paper circulation of 6,000, The Tartan serves the campus community of 9,500 students as well as faculty, staff and administration.

For more information, please click here

Contacts:

Copyright © Carnegie Mellon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Possible Futures

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives 1 million grant to revolutionize miniature optical devices May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project