Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene Transistors Introduced by Iranian Scientists

Abstract:
Engineers at Sharif University of Technology, Iran, devised a technique to form energy gaps in graphene energy bands so that they were enabled to switch off electric current in graphene.

Graphene Transistors Introduced by Iranian Scientists

Tehran, Iran | Posted on August 31st, 2009

According to the Iranian Nanotechnology Initiative Council (INIC), Graphene is a 2D crystal structure with hexagonal arrangements composed of carbon atoms also called honeycomb crystal lattice. In this semiconductor, there are no energy gaps between conduction bands and valence bands.

This absence brings about some unique electronic, optical and mechanical properties in graphene which promotes its functions/applications.

In this structure, one can control electrical conductivity by applying voltage on the external gate while the lack of energy gap makes it impossible to cut the conduction.

Behnaz Gharekhanlou, one of the researchers believes that the problem can be tackled by forming energy gaps.

"One way to form energy gaps is to make neutral defects inside graphene crystal. Neutral defects are free spaces shaped by removal of some carbon atoms from graphene network," Gharekhanlou underlined.

She explained that when these defects are built in proper patterns, it is possible to control the formed energy gaps in Dirac dots.

Varying the population or positions of atoms removed from graphene network affects energy gaps. In other words, this can smooth the path to production of electronic pieces based on diodes or transistors made up of graphene.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project