Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Physicists Find Way to Control Individual Bits in Quantum Computers

Optical lattices use lasers to separate rubidium atoms (red) for use as information “bits” in neutral-atom quantum processors -- prototype devices which designers are trying to develop into full-fledged quantum computers. NIST scientists have managed to isolate and control pairs of the rubidium atoms with polarized light, an advance that may bring quantum computing a step closer to reality.

Credit: NIST
Optical lattices use lasers to separate rubidium atoms (red) for use as information “bits” in neutral-atom quantum processors -- prototype devices which designers are trying to develop into full-fledged quantum computers. NIST scientists have managed to isolate and control pairs of the rubidium atoms with polarized light, an advance that may bring quantum computing a step closer to reality. Credit: NIST

Abstract:
Physicists at the National Institute of Standards and Technology (NIST) have overcome a hurdle in quantum computer development, having devised* a viable way to manipulate a single "bit" in a quantum processor without disturbing the information stored in its neighbors. The approach, which makes novel use of polarized light to create "effective" magnetic fields, could bring the long-sought computers a step closer to reality.

Physicists Find Way to Control Individual Bits in Quantum Computers

Gaithersburg, MD | Posted on July 8th, 2009

A great challenge in creating a working quantum computer is maintaining control over the carriers of information, the "switches" in a quantum processor while isolating them from the environment. These quantum bits, or "qubits," have the uncanny ability to exist in both "on" and "off" positions simultaneously, giving quantum computers the power to solve problems conventional computers find intractable - such as breaking complex cryptographic codes.

One approach to quantum computer development aims to use a single isolated rubidium atom as a qubit. Each such rubidium atom can take on any of eight different energy states, so the design goal is to choose two of these energy states to represent the on and off positions. Ideally, these two states should be completely insensitive to stray magnetic fields that can destroy the qubit's ability to be simultaneously on and off, ruining calculations. However, choosing such "field-insensitive" states also makes the qubits less sensitive to those magnetic fields used intentionally to select and manipulate them. "It's a bit of a catch-22," says NIST's Nathan Lundblad. "The more sensitive to individual control you make the qubits, the more difficult it becomes to make them work properly."

To solve the problem of using magnetic fields to control the individual atoms while keeping stray fields at bay, the NIST team used two pairs of energy states within the same atom. Each pair is best suited to a different task: One pair is used as a "memory" qubit for storing information, while the second "working" pair comprises a qubit to be used for computation. While each pair of states is field- insensitive, transitions between the memory and working states are sensitive, and amenable to field control. When a memory qubit needs to perform a computation, a magnetic field can make it change hats. And it can do this without disturbing nearby memory qubits.

The NIST team demonstrated this approach in an array of atoms grouped into pairs, using the technique to address one member of each pair individually. Grouping the atoms into pairs, Lundblad says, allows the team to simplify the problem from selecting one qubit out of many to selecting one out of two - which, as they show in their paper, can be done by creating an effective magnetic field, not with electric current as is ordinarily done, but with a beam of polarized light. The polarized-light technique, which the NIST team developed, can be extended to select specific qubits out of a large group, making it useful for addressing individual qubits in a quantum processor without affecting those nearby. "If a working quantum computer is ever to be built," Lundblad says, "these problems need to be addressed, and we think we've made a good case for how to do it." But, he adds, the long-term challenge to quantum computing remains: integrating all of the required ingredients into a single apparatus with many qubits.

*N. Lundblad, J.M. Obrecht, I.B. Spielman, and J.V. Porto. Field-sensitive addressing and control of field-insensitive neutral-atom qubits. Nature Physics, July 5, 2009.

####

About National Institute of Standards and Technology
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact
Chad Boutin

(301) 975-4261

Copyright © National Institute of Standards and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Possible Futures

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project