Home > News > Combination nanoparticles to fight cancer
May 13th, 2009
Combination nanoparticles to fight cancer
Abstract:
Korean chemists have assembled a multitalented nanoparticle that can hunt down, treat, and illuminate cancerous cells. The therapy combines diagnosis, treatment, and real-time monitoring of cancer progression, and although it may be several years before it reaches the market, it is a bold step towards useful nanoparticle-based medicine.
'We have created a new type of magnetic nanoparticle that is designed to target only highly cancerous cells without harming normal cells,' says Jinwoo Cheon, who led the research with Tae Gwan Park at Yonsei University in Seoul, South Korea. 'The particle is effective at delivering treatments to the cells and also has strong MRI and optical imaging capabilities.'
The particle has four key components. The core is a magnetic iron oxide nanoparticle, which can act as a contrast agent for MRI. Attached to the surface of this nanoparticle is the second component - a peptide that binds to integrin, a receptor found in higher quantities on the surface of cancerous cells. This allows the particle to tightly grip onto the target cells.
Source:
rsc.org
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||