Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > More Design Tools for High-Power LED BriteFlash in Camera Phones, Digital Cameras

Supercapacitor-Optimized LED Flash Drivers Integrate Circuitry Outlined in Blue
Supercapacitor-Optimized LED Flash Drivers Integrate Circuitry Outlined in Blue

Abstract:
Supercapacitor-optimized LED flash drivers from AnalogicTech, ON Semiconductor facilitate design

More Design Tools for High-Power LED BriteFlash in Camera Phones, Digital Cameras

Sydney, Australia | Posted on May 3rd, 2009

CAP-XX Limited (LSE:CPX), developer of the supercapacitor-driven BriteFlash Power Architecture, today announced availability of supercapacitor-optimized LED flash drivers from several power management integrated circuit (PMIC) companies to facilitate design of high-power LED flash units for high-resolution camera phones and digital cameras.

AnalogicTech's AAT1282, and ON Semiconductor's CAT3224 and soon-to-be-released NCP5680 supercapacitor-optimized LED flash drivers team with a thin, prismatic supercapacitor to drive today's high-current white LEDs (WLEDs) in a thin-form solution which provides comparable light energy to a bulky xenon flash. These LED flash drivers integrate all circuitry required to charge the supercapacitor, manage in-rush current and control LED current, thus saving development time, board space and component cost. Both Seoul Semiconductor and ON Semiconductor have created LED flash module reference designs that demonstrate the thin-form BriteFlash solution.

"This is valuable for our customers, since it offers a more integrated approach to incorporating BriteFlash into small mobile handsets and digital cameras," said Peter Buckle, CAP-XX vice president of sales and marketing. More supercapacitor-optimized LED flash drivers are in late-stage development at other PMIC companies, reported CAP-XX.

To produce high-resolution pictures in low-light conditions, cameras of 5 or more megapixels require a high-intensity flash. Today's WLEDs can deliver such light energy, but need up to 400% more power than a battery can provide. To support the battery, a thin supercapacitor can drive the LED flash to full intensity while also handling other peak-power needs - zoom, auto-focus, audio, video, wireless transmissions, GPS readings and RF amplification - without compromising slimline design.

CAP-XX developed the BriteFlash Power Architecture to give designers a thin-form LED flash solution that delivers light energy that far exceeds standard battery-powered LED flash and rivals xenon flash.

BriteFlash combines an LED flash driver IC, supercapacitor, battery and WLEDs. The flash driver's boost converter charges the supercapacitor to 5.5V, which then delivers high-peak current to drive the LED flash. The battery only supplies average power, and recharges the supercapacitor between flashes. A white paper explains more at: www.cap-xx.com/resources/pres_wp/pres_wp.htm#wp

Supercapacitor-optimized LED flash drivers integrate tools to manage the supercapacitor in power-hungry portable applications. ON Semiconductor's low-power business unit director, Marie-Therese Capron, explains their two solutions. "While CAT3224 is an integrated 4A LED driver for compact camera-flash design, our upcoming NCP5680 is a 10A LED driver featuring fully-programmable outputs via I2C interface, and power regulation capability to drive other power-hungry circuitry such as audio. Both solutions provide high-intensity photo flash plus continuous lighting for capturing video in dark environments."

Phil Dewsbury, product line director for AnalogicTech said, "Lithium Ion batteries simply cannot supply the high-peak currents required for high-intensity LED flash. Supercapacitors can store the required energy while keeping the form factor small. However, charging them quickly while minimizing battery current presented a unique challenge. Our solution was the AAT1282, a 2A, dual-output LED flash driver IC. Since its introduction, EDN has named the chip a finalist in the magazine's annual Innovation Awards. We are also sampling the AAT1282-4 which boosts output to 4A to support higher-megapixel cameras."

####

About CAP-XX Limited
CAP-XX is a world leader in thin, flat supercapacitors for space-constrained electronics devices. Supercapacitors resolve the performance limitations of batteries and other current-limited power supplies, bridging the gap between the peak power demanded by the load and that available from the source, and provide backup power if the primary power source fails.

CAP-XX supercapacitors enable manufacturers to make smaller, thinner, longer-running and more feature-rich electronic devices such as camera phones, SSDs, PDAs, wireless sensors and medical devices. The company is listed on the Alternative Investment Market (AIM) in London and is based in Sydney, Australia with sales offices in the UK and USA.

For more information, please click here

Contacts:
CAP-XX
Michelle Moody
Moody & Associates
+1-214-363-3460


AnalogicTech:
Karolien Cools-Wittry
+1-408-737-4600
karoliencw at analogictech.com

ON Semiconductor:
Helene Acrosse
+33 5 34 61 10 00

Copyright © CAP-XX Limited

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project