Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > IBM Technology Alliance Announces Availability of Advanced 28-Nanometer, Low-Power Semiconductor Technology

Abstract:
IBM, Chartered, GLOBALFOUNDRIES, Infineon, Samsung and STMicroelectronics Expand Technology Agreements

IBM Technology Alliance Announces Availability of Advanced 28-Nanometer, Low-Power Semiconductor Technology

EAST FISHKILL, NY | Posted on April 16th, 2009

In a move that signals a firm and ongoing commitment to advanced semiconductor technology leadership, IBM (NYSE: IBM), Chartered Semiconductor Manufacturing Ltd. (Nasdaq: CHRT and SGX-ST: Chartered), GLOBALFOUNDRIES, Infineon Technologies (FSE/NYSE: IFX), Samsung Electronics, Co., Ltd., and STMicroelectronics (NYSE: STM) have defined and are jointly developing a 28-nanometer (nm), high-k metal gate (HKMG), low-power bulk complementary metal oxide semiconductor (CMOS) process technology.

The low-power, 28nm technology platform can provide power-performance and time-to-market advantages for producers of a broad range of power-sensitive mobile and consumer electronics applications, including the fast-growing mobile Internet device market segment. The favorable leakage characteristics of the HKMG technology result in optimized battery life for the next generation of mobile products.

This announcement represents an extension of existing joint development agreements, and further progression in the technology offerings of the alliance partners, building on the success of earlier joint development work in 32nm HKMG technology.

A 28nm low-power technology evaluation kit was previously made available in December 2008 to early access clients, followed by release in March 2009 of an evaluation kit for open access to the general marketplace. Early risk production is anticipated in the second half of 2010.

Already working with clients on 32nm low-power technology, the alliance has gained valuable experience in the implementation of HKMG technology, and is offering a migration path from 32nm to 28nm technology. Clients can begin their designs today in leadership 32nm HKMG technology and then transition to 28nm technology for density and power advantages, without the need for a major redesign. By assuring a path from 32nm to 28nm technology, this migration methodology offers clients lower risk, reduced cost and faster time-to-market.

"Through this collaboration, IBM and its alliance partners are helping to accelerate development of next-generation technology to achieve high-performance, energy-efficient chips at the 28nm process level, maintaining our focus on technology leadership for our clients and partners," said Gary Patton, vice president for IBM's Semiconductor Research and Development Center on behalf of the technology alliance.

Preliminary results working with early access clients and partners indicate that the 28nm technology platform can provide a 40 percent performance improvement and a more than 20 percent reduction in power -- all in a chip that is half the size -- compared with 45nm technology. The high-k metal gate implementation allows one of the industry's smallest SRAM cells at 0.120 square microns, with low minimum voltage operation and competitive performance, leakage and stability.

These improvements enable microchip designs with outstanding performance, smaller feature sizes and low standby power, contributing to faster processing speed and longer battery life in next-generation mobile Internet devices and other systems.

"This statement of commitment to 28nm low-power technology by the IBM Joint Development Alliance is an important progression from 32nm high-k metal gate technology," said Jorgen Lantto, chief technology officer of ST-Ericsson. "Leaders in the mobile industry can utilize 28nm low-power technology to meet the increasingly aggressive demands for performance and improved battery life."

"28nm low-power technology will provide a significant step function in terms of performance, consumption and density versus the 40nm node, enabling competitive solutions for consumer and automotive segments served by STMicroelectronics," said Jean-Marc Chery, executive vice president, chief technology officer of STMicroelectronics.

In September 2008, ARM and the Common Platform alliance (IBM, Chartered and Samsung) announced a collaboration agreement to develop a comprehensive 32nm and 28nm Systems-on-a-Chip design platform. The first milestone from this collaboration was the announcement of the ARM Cortex processor in Common Platform 32nm HKMG technology at the Mobile World Congress in February.

"Through industry collaboration and integration of our processor and physical IP with advanced manufacturing technologies, ARM and the Common Platform alliance continue to drive the adoption of next-generation consumer electronics," said Simon Segars, executive vice president and general manager, physical IP division, ARM. "We believe this announcement is a significant advancement of the HKMG technology to enable our customers' aggressive product designs while accelerating their time to market."

Unlike poly/SiON, the HKMG low-power technology breaks down the historical barrier of scaling, allowing significant power and performance advantage without the need for complex processes, thereby lowering clients' total development cost.

Today's announcement marks the latest development achievement from this alliance of semiconductor manufacturing, development and technology companies who collaborate to address the product design and advanced process development challenges central to producing a smaller, faster, more cost efficient generation of semiconductors.

####

For more information, please click here

Contacts:
Chartered Semiconductor Manufacturing
Tiffany Sparks
408-941-1185


GLOBALFOUNDRIES
Jon Carvill
512-602-8162


Infineon Technologies
Mitchel Ahiers
408-503-2791


IBM
Jeff Couture
802-769-2483


Samsung Electronics
Lisa Warren-Plungy
408-544-5377


STMicroelectronics
Michael Markowitz
781-449-0354

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Chip Technology

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project