Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Self-Cleaning, Low-Reflectivity Surface Could Improve PV Cells

Image shows silicon pyramid structures etched for one minute using a hydrogen fluoride/hydrogen peroxide/water solution. The resulting structure has roughness at the micron and nanometer scales.
Image shows silicon pyramid structures etched for one minute using a hydrogen fluoride/hydrogen peroxide/water solution. The resulting structure has roughness at the micron and nanometer scales.

Abstract:
Micron- and Nanometer-Scale Features Make Superhydrophobic Surface

Self-Cleaning, Low-Reflectivity Surface Could Improve PV Cells

Atlanta, GA | Posted on April 8th, 2009

Using two different types of chemical etching to create features at both the micron and nanometer size scales, researchers at the Georgia Institute of Technology have developed a surface treatment that could boost the light absorption of silicon photovoltaic cells in two complementary ways.

The surface treatment increases absorption both by trapping light in three-dimensional structures and by making the surfaces self-cleaning - allowing rain or dew to wash away the dust and dirt that can accumulate on photovoltaic arrays. Because of its ability to make water bead up and roll off, the surface is classified as superhydrophobic.

"The more sunlight that goes into the photovoltaic cells and the less that reflects back, the higher the efficiency can be," said C.P. Wong, Regents' professor in Georgia Tech's School of Materials Science and Engineering. "Our simulations show that we can potentially increase the final efficiency of the cells by as much as two percent with this surface structure."

Supported by the National Science Foundation (NSF) and the National Electric Energy Testing Research and Applications Center (NEETRAC) at Georgia Tech, the research was described March 24th at the Spring 2009 National Meeting of the American Chemical Society in Salt Lake City.

The silicon etching treatment mimics the superhydrophobic surface of the lotus leaf, which uses surface roughness at two different size scales to create high contact angles that encourage water from rain or condensation to bead up and run off. As the water runs off, it carries with it any surface dust or dirt - which also doesn't adhere because of the unique surface properties.

In the silicon surface treatment, the two-tier roughness - created with both micron- and nano-scale structures - works in the same way as the lotus leaf, minimizing contact between the water or dust and the surface, Wong noted.

"When a water droplet reaches the surface, it sits on top of this two-tier roughness and only about three percent of it is in contact with the silicon," he explained.

Preparation of the superhydrophobic surface begins with use of a potassium hydroxide (KOH) solution to etch the silicon surface. The solution preferentially removes silicon along crystalline planes, creating micron-scale pyramid structures in the surface.

An e-beam process is then used to apply nanometer-scale gold particles to the pyramid structures. Using a solution of hydrogen fluoride (HF) and hydrogen peroxide (H2O2), a metal-assisted etching process - with gold as the catalyst - produces the nanometer-scale features. The feature size is controlled by the diameter of the gold particles and the length of time the silicon is exposed to the etching.

Finally, the gold is removed with a potassium iodide (KI) solution and the surface coated with a fluorocarbon material, perfluorooctyl tricholosilane (PFOS).

The combination of increased light absorption from the textured surface and the self-cleaning ability both help boost absorption of sunlight hitting the silicon surface.

"A normal silicon surface reflects a lot of the light that comes in, but by doing this texturing, the reflection is reduced to less than five percent," said Dennis Hess, a professor in the Georgia Tech School of Chemical and Biomolecular Engineering. "As much as 10 percent of the light that hits the cells is scattered because of dust and dirt of the surface. If you can keep the cells clean, in principle you can increase the efficiency. Even if you only improve this by a few percent, that could make a big difference."

Even in desert areas where constant sunlight provides ideal conditions for photovoltaic arrays, nighttime dew should provide enough moisture to keep the cells clean, Wong said.

The research team, which also included Yonghao Xiu, Shu Zhang and Yan Liu, is working with Georgia Tech's University Center of Excellence for Photovoltaics Research and Education - headed by Professor Ajeet Rohatgi of the Georgia Tech School of Electrical and Computer Engineering - to evaluate the surface treatment with real solar cells.

However, adoption of the superhydrophobic surface treatment will ultimately depend on its long-term robustness and cost.

"Because the structures are so small, they are fairly fragile," Hess noted. "Mechanical abrasion to the surface can destroy the superhydrophobicity. We have tried to address that here by creating a large superhydrophobic surface area so that small amounts of damage won't affect the overall surface."

Large scale cost estimates haven't yet been done, but Hess said the additional etching and vacuum deposition steps shouldn't add dramatically to the already complex manufacturing process used for fabricating silicon PV cells.

In addition to photovoltaic cells, the surface treatment could be used to create anti-bacterial coatings on medical equipment, micro-electromechanical devices that don't stick together, and improved microfluidic devices.

Writer: John Toon


####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's premier research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 19,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA

Media Relations Contacts:
John Toon
404-894-6986


or

Abby Vogel
404-385-3364


Technical Contacts: C.P. Wong (404-894-8391); E-mail: or Dennis Hess (404-894-5922); E-mail:

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Possible Futures

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project