Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New applications for carbon nanomaterials in hydrogen storage

Abstract:
An international research team, involving Professor Rajeev Ahuja at Uppsala University and researchers in the USA, set out to understand the mechanism behind the catalytic effects of carbon nanomaterials.

New applications for carbon nanomaterials in hydrogen storage

Uppsala, Sweden | Posted on March 16th, 2009

Experimental and theoretical efforts were combined in a synergistic approach and the results, published this week in the ASAP section of the journal Nano Letters, will fasten efforts to develop new catalysts.

Our energy-hungry world has become increasingly dependent on new methods to store and convert energy for new, environmentally friendly modes of transportation and electrical energy generation as well as for portable electronics. Mobility - the transport of people and goods - is a socioeconomic reality that will surely increase in the coming years. Hydrogen, which can be produced with little or no harmful emissions, has been projected as a long term solution for a secure energy future. Research into safe and efficient means of hydrogen production, storage, and use is essential to make the "hydrogen economy" a reality.

Car manufactures are showing interest in using solid state hydrogen storage materials, e.g. NaAlH4, as new energy storage media. The functional properties of these materials however have to be improved by catalysts. The effect of earlier catalysts, e.g. Ti, has been difficult to explain. The current results give an unambiguous understanding of the mechanism at work in the new carbon nanomaterial catalysts.

The researchers set out to understand the mechanism behind the catalytic effects of carbon nanomaterials, specifically on the example of sodium alanate, which is a popular material for hydrogen storage studies.

"Now that the catalytic capabilities of carbon nanomaterials have been demonstrated so clearly and the mechanism that makes this behaviour possible has been understood, we expect a strong impulse on putting this effect to use in practical applications.", says Professor Rajeev Ahuja.

"Certainly, our findings have the strongest impact in the field of hydrogen storage, but beyond that, the same mechanism that we revealed can make carbon nanomaterials a very important catalyst in many other systems as well."

The extensive simulations were performed at Uppsala University's Multidisciplinary Center for Advanced Computational Science (UPPMAX).

Read the article online in Nano Letters at pubs.acs.org/doi/abs/10.1021/nl803498e

####

About Uppsala University
Uppsala University is a comprehensive research university dedicated to advancing science, scholarship, and higher education. The university plays an active role in society, promoting development and innovation.

For more information, please click here

Contacts:
Andreas Blomqvist
phone +46(0)18-471 58 52

Dr. C. Moysés Araújo
phone +46(0)18-471 35 84

Dr. Ralph H. Scheicher
phone +46(0)18-471 58 52

Professor Rajeev Ahuja
phone +46(0)70-425 09 35

Copyright © Uppsala University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project