Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles get svelter in the heat: Scientists have discovered magnetic nanoparticles that, unlike most materials, shrink when they are heated

Figure 1: The distance between the white spots in this electron diffraction pattern are inversely proportional to the distance between atoms in the CuO nanoparticles and will move closer together or further apart depending on whether the nanoparticles expand or contract, respectively, when they are heated.
Figure 1: The distance between the white spots in this electron diffraction pattern are inversely proportional to the distance between atoms in the CuO nanoparticles and will move closer together or further apart depending on whether the nanoparticles expand or contract, respectively, when they are heated.

Abstract:
Materials typically expand when they are heated, which is why the concrete slabs in sidewalks can buckle on a hot day. Now, Kenichi Kato of the RIKEN SPring-8 Center in Harima and colleagues at Saga University and Japan's National Institute of Advanced Industrial Science and Technology have identified several materials that defy this common rule of thumb. In a paper published in Nature Nanotechnology, the team reports that nanoparticles of cupric oxide (CuO) actually shrink when they are heated1.

Nanoparticles get svelter in the heat: Scientists have discovered magnetic nanoparticles that, unlike most materials, shrink when they are heated

Japan | Posted on February 19th, 2009

To make the nanoparticles, Kato and colleagues started with large crystals of CuO and milled them down to particles approximately 5 nanometers in size. Using x-ray and electron diffraction (Fig. 1), they measured the average distances between the atoms that make up CuO and how these distances vary with temperature. Starting from low temperatures (-253.15 °C), they found that CuO shrinks by about 1% from its original volume when it is heated to 200 K (-73.15 °C)—an effect that is several times larger than what is found in other materials that shrink when heated. With further heating, the nanoparticles started to expand.

The reason that materials, in general, expand when they are heated is that the atoms start to vibrate around their equilibrium positions as they gain energy and move away from one another. The opposite case—negative thermal expansion—can occur if the vibrations of some atoms actually pull other atoms together. For example, if an oxygen atom that bonds two metal atoms starts to vibrate perpendicular to this bond, it will pull the two metal atoms closer together. However, Kato and his colleagues believe that the negative thermal expansion in CuO nanoparticles may be related to this material's magnetic properties, since the crossover from normal to negative thermal expansion in the nanoparticles occurs at the same temperature that the CuO orders magnetically.

This effect is also found in nanoparticles of the magnetic material manganese (II) fluoride (MnF2). "As the temperature is cooled and CuO orders magnetically, the magnetic Cu atoms begin to be aligned like a pair of bar magnets," explains Xu-Guang Zheng from Saga University. "The two bar magnets push each other so that the distance between the two magnetic atoms expands." Conversely, as the temperature increases, the Cu atoms push against each other less, leading to negative thermal expansion. Since this is a general argument, the team expects they will be able to find other magnetic materials in nanoparticle form that will exhibit negative thermal expansion.

Reference
Zheng, X.G., Kubozono, H., Yamada, H., Kato, K., Ishiwata, Y. & Xu, C.N. Giant negative thermal expansion in magnetic nanocrystals. Nature Nanotechnology 3, 724-726 (2008).

The corresponding author for this highlight is based at the RIKEN Structural Materials Science Laboratory

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project