Home > Press > Viscosity-Enhancing Nanomaterials May Double Service Life of Concrete
![]() |
The barely visible blue-green area at the top of this X-ray image of concrete with the NIST nanoadditive shows that very few chloride ions (in green) penetrate into the concrete.
Credit: NIST |
Abstract:
Engineers at the National Institute of Standards and Technology (NIST) are patenting a method that is expected to double the service life of concrete. The key, according to a new paper*, is a nano-sized additive that slows down penetration of chloride and sulfate ions from road salt, sea water and soils into the concrete. A reduction in ion transport translates to reductions in both maintenance costs and the catastrophic failure of concrete structures. The new technology could save billions of dollars and many lives.
Concrete has been around since the Romans, and it is time for a makeover. The nation's infrastructure uses concrete for millions of miles of roadways and 600,000 bridges, many of which are in disrepair. In 2007, 25 percent of U.S. bridges were rated as structurally deficient or functionally obsolete, according to the Federal Highway Administration. Damaged infrastructure also directly affects large numbers of Americans' own budgets. The American Society of Civil Engineers estimates that Americans spend $54 billion each year to repair damages caused by poor road conditions.
Infiltrating chloride and sulfate ions cause internal structural damage over time that leads to cracks and weakens the concrete.
Past attempts to improve the lifetime of concrete have focused on producing denser, less porous concretes, but unfortunately these formulations have a greater tendency to crack. NIST engineers took a different approach, setting out to double the material's lifetime with a project called viscosity enhancers reducing diffusion in concrete technology (VERDICT). Rather than change the size and density of the pores in concrete, they reasoned, it would be better to change the viscosity of the solution in the concrete at the microscale to reduce the speed at which chlorides and sulfates enter the concrete. "Swimming through a pool of honey takes longer than making it through a pool of water," engineer Dale Bentz says.
They were inspired by additives the food processing industry uses to thicken food and even tested out a popular additive called xanthum gum that thickens salad dressings and sauces and gives ice cream its texture.
Studying a variety of additives, engineers determined that the size of the additive's molecule was critical to serving as a diffusion barrier. Larger molecules such as cellulose ether and xanthum gum increased viscosity, but did not cut diffusion rates. Smaller molecules—less than 100 nanometers—slowed ion diffusion. Bentz explains, "When additive molecules are large but present in a low concentration, it is easy for the chloride ions to go around them, but when you have a higher concentration of smaller molecules increasing the solution viscosity, it is more effective in impeding diffusion of the ions."
The NIST researchers have demonstrated that the additives can be blended directly into the concrete with current chemical admixtures, but that even better performance is achieved when the additives are mixed into the concrete by saturating absorbant, lightweight sand. Research continues on other materials as engineers seek to improve this finding by reducing the concentration and cost of the additive necessary to double the concrete's service life.
A non-provisional patent application was filed in September, and the technology is now available for licensing from the U.S. government; the NIST Office of Technology Partnerships can be contacted for further details (Contact: Terry Lynch, , (301) 975-2691).
* D.P. Bentz, M.A. Peltz, K.A. Snyder and J.M. Davis. VERDICT: Viscosity Enhancers Reducing Diffusion in Concrete Technology. Concrete International. 31 (1), 31-36, January 2009.
####
About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.
For more information, please click here
Contacts:
Evelyn Brown
(301) 975-5661
Copyright © NIST
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Construction
Temperature-sensing building material changes color to save energy January 27th, 2023
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |