Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Biodegradable Nanoprobe Images New Blood Vessel Growth

Abstract:
Angiogenesis, the growth of new blood vessels, plays a critical role in several chronic human diseases, including metastatic cancer. In fact, several new anticancer therapies are designed to starve tumors by shutting down angiogenesis, but the lack of a good assay for quantifying angiogenesis in the body has hampered the development of effective antiangiogenesis therapies.

Biodegradable Nanoprobe Images New Blood Vessel Growth

Bethesda, MD | Posted on January 17th, 2009

Late fall 2008, researchers at The Siteman Center of Cancer Nanotechnology Excellence described a novel nanoparticle capable of imaging angiogenesis using magnetic resonance imaging (click here to see earlier story). Now, researchers at the University of California, Berkeley, have developed a second type of nanoparticle that can image angiogenesis using positron emission tomography (PET). The investigators, led by Jean Fréchet, Ph.D., describe their new nanoparticle in a paper published in the journal Proceedings of the National Academy of Sciences of the United States of America.

The investigators used a nanoparticle known as a dendrimer, a spherical polymer with multiple chemical functionality built into its structure. This chemical functionality enabled the investigators to incorporate radioactive bromine-76 into the core of the dendrimer and add a targeting agent to the outside of the dendrimer. For a targeting agent, the researchers used cyclic-RGD, a well-studied peptide that binds strongly to the integrin avb3, a protein expressed only on the surface of new blood vessels. The dendrimer itself was designed to degrade in the body once imaging is complete.

Studies using cells grown in culture showed that cells expressing avb3 readily took up the targeted dendrimers, whereas other cells did not. These experiments also showed that binding affinity for the targeted nanoparticle was some fiftyfold higher than for cyclic-RGD alone. This significant boost in binding affinity likely results from a Velcro®-like effect in which multiple cyclic-RGD molecules on the nanoparticle bind simultaneously to multiple avb3 molecules on the surface of target cells. Subsequent studies in mice showed that the targeted dendrimer was able to image sites of angiogenesis with relatively little background from nonspecific binding.

####

About National Cancer Institute
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis.”

Related News Press

News and information

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Nanomedicine

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Discoveries

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project