Home > Press > UC Davis researchers find molecule that targets brain tumors:New discovery could allow for direct delivery of treatments
Abstract:
UC Davis Cancer Center researchers report today the discovery of a molecule that targets glioblastoma, a highly deadly form of cancer. The finding, which is published in the January 2009 issue of the European Journal of Nuclear Medicine and Molecular Imaging, provides hope for effectively treating an incurable cancer.
Glioblastoma is the most common and aggressive type of primary brain tumor in adults. It is marked by tumors with irregular shapes and poorly defined borders that rapidly invade neighboring tissues, making them difficult to remove surgically.
"These brain tumors are currently treated with surgery to remove as much of the tumor as possible followed by radiation to kill cancer cells left behind and systemic chemotherapy to prevent spread to nearby tissues," said Kit Lam, senior author of the study and UC Davis chief of hematology and oncology. "It is unfortunate that this approach does not extend survival significantly. Most patients survive less than one year."
To find new options for treating the disease, Lam and his colleagues began searching for a molecule that could be injected into a patient's bloodstream and deliver high concentrations of medication or radionuclides directly to brain tumor cells while sparing normal tissues. Through their study, they identified a molecule — called LXY1 — that binds with high specificity to a particular cell-surface protein called alpha-3 integrin, which is overexpressed on cancer cells.
They also tested the molecule's ability to target brain cancer by implanting human glioblastoma cells both beneath the skin and in the brains of mice. The researchers injected the mice with a radiolabeled version of LXY1 and, using near-infrared fluorescence imaging, showed that the molecule did preferentially bind to human glioblastoma cells in both locations.
"This outcome gives us great hope that we will be able to deliver targeted therapies to treat glioblastoma," said Lam.
Lam is planning to continue this work by repeating the experiments with powerful cancer treatments linked to the LXY1 molecule. They will begin with iodine-131, a form of radionuclide currently used to treat some cancers, as well as a nanoparticle, or "smart bomb," that would carry cancer-fighting drugs to diseased cells.
Additional UC Davis study authors were Wenwu Xiao, Nianhuan Yao, Li Peng and Ruiwu Liu. Their research was funded by a grant from the National Institutes of Health.
####
About University of California - Davis - Health System
Designated by the National Cancer Institute, UC Davis Cancer Center cares for 9,000 adults and children each year from throughout the Central Valley and inland Northern California. The center's Brain and Neurologic Cancer Program includes highly experienced neurosurgeons, oncologists and nurses who help hundreds of patients overcome neurological cancers. Advanced laboratory and clinical research programs provide access to the most advanced treatments and technologies possible.
For more information, please click here
Contacts:
Public Affairs
UC Davis Health System
4900 Broadway, Suite 1200
Sacramento, CA 95820
Phone: (916) 734-9040
FAX: (916) 734-9066
Karen Finney
916-734-9064
Copyright © University of California - Davis - Health System
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||