Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Seeing the unseen with 'super-resolution' fluorescence microscopy: Visualizing cells at the level where they work

Abstract:
Thanks to a new "super-resolution" fluorescence microscopy technique, Harvard University researchers have succeeded in resolving the features of cells as miniscule as 20-30 nanometers (nm), an order of magnitude smaller than conventional fluorescence light microscopy images, according to a presentation at the American Society for Cell Biology (ASCB) 48th Annual Meeting, Dec. 13-17, 2008, in San Francisco.

Seeing the unseen with 'super-resolution' fluorescence microscopy: Visualizing cells at the level where they work

San Francisco, CA | Posted on December 16th, 2008

"Super resolution" microscopy techniques enable scientists to visualize cells laterally below 200-300 nm, which is the length scale of most intracellular structures and the level at which the cell gets most of its work done.

Harvard's "super-resolution" technique, developed by Bo Huang, Xioawei Zhuang and colleagues at the university, is called Stochastic Optical Reconstruction Microscopy (STORM).

It is one of several higher-resolution fluorescence microscopy techniques that fundamentally surpass the diffraction "blind spot" of conventional light microscopes.

Because conventional light microscopes cannot resolve two objects closer than half the wavelength of the light, they produce images that appear blurry and overlap no matter how high the magnification.

According to the Harvard researchers, STORM can record light emitted from a single molecule in the sample.

Using probe molecules that can be "photoswitched" between a visible and an invisible state, STORM can determine the position of every molecule of interest and can then compile all the molecules' positions to define a structure.

Huang and colleagues have adapted STORM to study three-dimensional structures and can now visualize a whole cell with an axial resolution of 50-60 nm.

Multicolor imaging also has been achieved by using photoswitchable fluorophores made of combinatorial pairs of various activator dyes and reporter dyes. Multicolor, 3-D STORM is able to visualize detailed interactions between cell organelles and the cytoskeleton.

In brain tissue, the researchers used STORM to reveal the fine details in the synaptic structure of the olfactory system.

The lead author will present, "Seeing the Unseen in a Cell with Super-Resolution Fluorescence Microscopy," Tuesday, Dec. 16, 1:30 pm, Imaging Technology II, Program #2014, Board #B478, Halls A-C, Moscone Center

Authors: B. Huang, B. Brandenburg, X. Zhuang, Howard Hughes Medical Institute, Harvard University, Cambridge, MA; B. Huang, S.A. Jones, B. Brandenburg, X. Zhuang, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA; M. Bates, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA; W. Wang, X. Zhuang, Department of Physics, Harvard University, Cambridge, MA; G.T. Dempsey, Graduate Program in Biophysics, Harvard University, Cambridge, MA

####

For more information, please click here

Contacts:
Cathy Yarbrough
freelance
ASCB annual meeting media manager


858-243-1814

John Fleischman
ASCB science writer

(513) 929-4635
(513) 706-0212

Bo Huang
Harvard University
(617) 384-9078

Copyright © American Society for Cell Biology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project