Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UD researchers show that plants can accumulate nanoparticles in tissues

Magnetic nanoparticles can be taken up, translocate and accumulate in pumpkin plants. The numbers represent magnetic signal strength in various plant tissues in the unit of memu (1 memu = 8.5 x 10 to the 11th particles). Figure courtesy of Profs. Yan Jin and John Xiao, University of Delaware.
Magnetic nanoparticles can be taken up, translocate and accumulate in pumpkin plants. The numbers represent magnetic signal strength in various plant tissues in the unit of memu (1 memu = 8.5 x 10 to the 11th particles). Figure courtesy of Profs. Yan Jin and John Xiao, University of Delaware.

Abstract:
Researchers at the University of Delaware have provided what is believed to be the first experimental evidence that plants can take up nanoparticles and accumulate them in their tissues.

UD researchers show that plants can accumulate nanoparticles in tissues

Newark, DE | Posted on November 13th, 2008

The laboratory study, which involved pumpkin plants, indicates a possible pathway for nanoparticles to enter the food chain. The research also reveals a new experimental approach for studying nanoparticles and their potential impacts.

Yan Jin, professor of soil physics in the University of Delaware College of Agriculture and Natural Resources, and John Xiao, professor of physics and astronomy in the College of Arts and Sciences, led the study, working with colleagues Jung-youn Lee and Harsh Bais at the Delaware Biotechnology Institute, a premier research center at the University of Delaware.

The results were published in a cover article in the Journal of Environmental Monitoring and also were highlighted in Chemical Biology, a journal of the Royal Society of Chemistry.

Nanoparticles are bits of chemicals a thousand times smaller than a human cell. While nanoparticles occur naturally in the environment, they increasingly are being manufactured for use in electronics to cosmetics, fuel cells to medical procedures.

Yet the human and environmental health risks associated with these tiny engineered particles are not well known. Because chemical compounds can take on different properties at such a reduced size--lead in a pencil reportedly becomes stronger than steel, for example--there is concern that these invisible particles could easily be breathed in by humans and animals, with damaging or toxic effects.

"Plants serve as a foundation of the food chain," noted Jin, who was recently named a fellow of the Soil Society of America. "We demonstrated this possible route for nanoparticles in the environment--whether it poses potential harm to human health depends on many factors. This is a preliminary study, which we hope will spur additional interdisciplinary research by the scientific community."

The researchers chose pumpkins for the study, Jin said, because they take in a lot of water and are easy to grow.

The plants were grown hydroponically in an aqueous medium to which nanoparticles of iron oxide, or magnetite, a magnetic form of iron ore, were added.

After 20 days of growth, the plants were cut into pieces and dried in a vacuum dessicator. A magnetometer was then used to detect if any of the particles had been absorbed by the plant.

"Our study was a worst-case scenario in order to test the feasibility of our approach in being able to detect the particle," Xiao noted. "It really provides a new technique for doing this kind of research."

Xiao, who directs the Center for Spintronics and Biodetection at the University of Delaware, noted that the magnetometer used in his physics research is similar to magnetic resonance imaging (MRI), which uses a powerful magnetic field and radio-frequency pulses to produce images of internal structures in the human body.

The magnetometer subjected the dried pumpkin plants to a low-frequency monotone to vibrate them. The vibration revealed each tiny particle of magnetite's unique magnetic signal and, thus, exact location inside the plant.

The researchers noted that in their initial screening tests, no magnetic signals were detected in lima bean plants compared to the strong signals in pumpkin plants, which suggests that different plants have varied responses to nanosized particles.

Additionally, while the pumpkins were studied primarily in aqueous media, the researchers also tested the plants in sand to which nanoparticles were added, where there was little uptake, and in soil, where there was no uptake of nanoparticles at all, according to Jin.

Jin noted how important interdisciplinary collaboration has been to the research and said she hopes to see plant scientists and molecular biologists involved in future studies to see how nanoparticles actually get into plants.

"Some believe it is a passive process; others are convinced it is an active one," Jin said. "There could be whole other lines of research," she noted.

"It's like a saying we have in Chinese," Jin added. "You throw out a brick and hope to attract a jade."

The saying, which is a Chinese way of showing humility, demonstrates the speaker's hope that others will improve on an idea.

"We want to stress that our study is very preliminary, and we hope it will stimulate more research in this area," she said.

The project was funded by the Delaware Experimental Program to Stimulate Competitive Research (EPSCoR), which is supported by the National Science Foundation and the state of Delaware.

Jin and Xiao also recently won a STAR grant from the Environmental Protection Agency to examine the fate and transport of engineered nanoparticles in porous media, including soil and groundwater.

Article by Tracey Bryant

####

For more information, please click here

Contacts:
University of Delaware
Newark, DE 19716 • USA
Phone: (302) 831-2792

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project