Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Coatings to help medical implants to connect with neurons

Jessica Winter
Jessica Winter

Abstract:
Plastic coatings could someday help neural implants treat conditions as diverse as Parkinson's disease and macular degeneration.

Coatings to help medical implants to connect with neurons

Columbus, OH | Posted on August 21st, 2008

The coatings encourage neurons in the body to grow and connect with the electrodes that provide treatment.

Jessica O. Winter, assistant professor of chemical and biomolecular engineering at Ohio State University described the research Thursday, August 21 at the American Chemical Society meeting in Philadelphia. She is also an assistant professor of biomedical engineering.

Worldwide, researchers are developing medical implants that stimulate neurons to treat conditions caused by neural damage. Most research focuses on preventing the body from rejecting the implant, but the Ohio State researchers are focusing instead on how to boost the implants' effectiveness.

"We're trying to get the nerve tissue to integrate with a device -- to grow into it to form a better connection," Winter said.

She and her colleagues are infusing water-soluble polymers with neurotrophins, proteins that help neurons grow and survive.

They are combining different polymers, some shaped like tiny spheres and fibers, to create composite coatings that release neurotrophins in a steady dose over time. The coatings also give nerves a scaffold to cling to as they grow around an implant.

The researchers coated two kinds of electrodes -- one, a flat electrode used in retinal implants, and the other a cylindrical electrode array used in deep brain stimulation. The first is being used in experimental treatments for macular degeneration, while the second holds promise for suppressing tremors in people who have Parkinson's disease.

The first coating they developed was made of polyethylene glycol-polylactic acid (PEGPLA) -- a polymer often used in medical implants.

They placed the PEGPLA-coated electrodes in an array of cell cultures and measured how long the coating dispensed the neurotrophins, and how the cells responded.

They tested the retinal implants with retinal cells taken from rabbits, and the deep brain electrodes with PC12 cells -- cells that grow into neurons -- which were taken from cancer tissue in rats. In both cases, neurons grew from the cells and extended toward the electrodes.

Ideally, Winter explained, coatings would release neurotrophins for up to three months, since that's the length of time that nerves in the body require to heal after implant surgery.

Using only PEGPLA, they found that the implant would release neurotrophins for three weeks.

That's why the researchers are now combining it with two other biodegradable polymers: polylactic co-glycol acid (PLGA) microspheres and polycaprolactone (PCL) polyester nanofibers.

In this scheme, one polymer releases an initial burst of the chemical, then another polymer begins its release, and then another.

At the time of the American Chemical Society meeting, Winter and her team were still measuring the performance of the PEGPLA-PLGA-PCL coating. But the initial results look promising.

"To get long-term release, we think these multi-component systems are the way to go," Winter said. "We can control the release by combining the materials in different ways, and we're confident that we can extend the release time further -- even to 90 days."

As researchers work to develop neural implants, they face many challenges, including how to provide enough electrical stimulation to nerves without damaging surrounding tissue.

Because the coatings encourage neurons to connect directly with electrodes, this technology could allow researchers to develop smaller implants -- ones that contain many densely packed electrodes to provide a high amount of stimulation in a small space, thus better preserving surrounding tissue.

Winter's coauthors on the presentation include Ning Han, a doctoral student; Lee Siers, a masters student; Michael Owens, a bachelors student who recently graduated; John Larison and Jean Wheasler, both currently undergraduate students, and Kanal Parikh, a former student of Reynoldsburg High School who will be a freshman at Ohio State this fall.

This research was funded by Ohio State University.

####

For more information, please click here

Contacts:
Jessica O. Winter
(614) 247-7668


Written by
Pam Frost Gorder
(614) 292-9475

Copyright © Ohio State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project