Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists to Assess Beijing Olympics Air Pollution Control Efforts

V. Ramanathan, chief scientist of CAPMEX, with several AUAVs that will fly above China.

Credit: Scripps Institution of Oceanography
V. Ramanathan, chief scientist of CAPMEX, with several AUAVs that will fly above China.

Credit: Scripps Institution of Oceanography

Abstract:
Unmanned aerial vehicles will measure emissions during China's 'great shutdown'

Scientists to Assess Beijing Olympics Air Pollution Control Efforts

Arlington, VA | Posted on August 8th, 2008

As the Summer Olympics in Beijing kicks off this week, the event is giving scientists a once-in-a-lifetime opportunity to observe how the atmosphere responds when a heavily populated region substantially curbs everyday industrial emissions.

The National Science Foundation (NSF)-funded "Cheju ABC Plume-Monsoon Experiment" (CAPMEX) will include a series of flights by specially equipped unmanned aircraft known as autonomous unmanned aerial vehicles (AUAVs).

The aerial vehicles were developed at the Scripps Institution of Oceanography (SIO) in La Jolla, Calif. Instruments on the aircraft can measure smog and its effects on meteorological conditions.

Data-gathering flights will originate at the South Korean island of Cheju, located about 1,165 kilometers (725 miles) southeast of Beijing. Cheju is in the projected path of pollution plumes that begin in various cities in China, including the capital.

Information from the flights will be combined with measurements by satellites and observatories on the ground that will track dust, soot and other pollution aerosols that travel from Beijing and other parts of China in so-called atmospheric brown clouds.

The instruments will observe pollution transport patterns as Beijing enacts its "great shutdown" for the Summer Olympic Games. Chinese officials have reduced industrial activity by as much as 30 percent and mandated cuts in automobile use by half, to safeguard the health of competing athletes immediately before and during the games.

"Thanks to the concern of Olympic organizers, the Chinese government, and the cooperation of the Korean government, we have a huge and unprecedented opportunity to observe a large reduction in everyday emissions from a region that's very industrially active," said atmospheric scientist V. Ramanathan of SIO, the lead investigator of CAPMEX.

"CAPMEX will be the very first UAV campaign in east Asia for air pollution and cloud interaction studies," added CAPMEX field campaign co-lead investigator Soon-Chang Yoon, a researcher at the School of Earth and Environmental Sciences at Seoul National University in Korea. "This will be a very interesting experiment that can never happen again."

"Ramanathan's earlier research on atmospheric brown clouds demonstrated their importance in the polluted regions of the atmosphere," said Jay Fein, NSF program director for climate dynamics. "CAPMEX takes this work an important step forward with new micro- and nano-sensor technologies. These technologies will provide new estimates of solar irradiance, aerosol-cloud interactions, climate forcing and important components of the biogeochemical cycles of the East Asian and western Pacific Ocean region."

Satellite and ground observations began on August 1. Pre-inspection test flights are scheduled to begin August 9, with the field campaign expected to run through September 30.

"Black carbon in soot is a major contributor to global warming," said Ramanathan. "By determining the effects of soot reductions during the Olympics on atmospheric heating, we can gain much needed insights into the magnitude of future global warming."

Ramanathan's team has revolutionized the gathering of atmospheric data through the use of AUAVs that enable researchers to form dimensional profiles of clouds and other atmospheric masses at relatively low cost.

In previous studies, meteorological data gathered by the aircraft helped demonstrate that atmospheric brown clouds can diminish the solar radiation that reaches Earth's surface, warm the atmosphere at low altitudes and disrupt cloud formation.

With CAPMEX, scientists hope to improve their ability to deliver such assessments of particulate pollution effects more rapidly and enhance their value as a policymaking tool.

Miniaturized instruments on the aircraft measure a range of properties such as the quantity of soot and size of the aerosols upon which cloud droplets form. The instruments also record variables such as temperature, humidity and the intensity of sunlight that permeates clouds and masses of smog.

For CAPMEX, photonics instruments will be added to the aircrafts' payloads to help calculate the specific contributions of various aerosols to atmospheric heating.

Other new instruments such as auto-leveling platforms will enable researchers to improve estimates of how much dimming of sunlight takes place at the ocean surface because of pollution aerosols in the atmosphere.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Cheryl Dybas
NSF
(703) 292-7734


Rob Monroe
UCSD/SIO
(858) 534-3624

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Sports

Threads that sense how and when you move? New technology makes it possible: Engineers created thread sensors that can be attached to skin to measure movement in real time, with potential implications for tracking health and performance January 29th, 2021

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project